Skip to main content

Interferometric and Holographic Imaging of Surface Wave Patterns for Characterization of Material Degradation

  • Chapter
Nondestructive Materials Characterization

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 67))

Abstract

Optical interferometry and holography systems provide an effective means for measuring surface motions and vibrations on nanometer scales, and have been used extensively in the past in a number of different applications [1–4] . For nondestructive evaluation (NDE) of material degradation, both techniques can be combined with classical ultrasonic testing methods to provide non-contact measurement capabilities for evaluating important parameters such as fatigue state [5], and the existence of microcracks [6] and corrosion [7]. Here we describe two advanced NDE systems capable of ‘visualizing’ ultrasonic fields on material surfaces with high sensitivity and spatial resolution. The systems use heterodyne interferometry and frequency-translated holography concepts to create detailed two-dimensional displacement-field images, which provide quantitative measurements of ultrasonic field parameters related to ultrasonic wave dispersion, phase velocity, attenuation, and localized scattering. Each of these parameters, in turn, can be used to assess the underlying material structure. Local ultrasonic scattering, for example, can be used to detect and characterize surface-breaking cracks [8–11]. As a limiting factor Hassan and Nagy have studied the effect of grain noise in detail [12].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morre P, McIntire P (1995) Nondestructive Testing Handbook, vol. 9, Special Nondestructive Testing Methods, ASNT, New York

    Google Scholar 

  2. Doyle J (1999) The Expanding Use of Lasers in Nondestructive Testing. Materials Evaluation

    Google Scholar 

  3. Stegeman G (1976) Optical Probing of Surface Waves and Surface Wave Devices, IEEE Trans. On Sonics and Ultrasonics, vol. 23, No. 1

    Google Scholar 

  4. Erf R (1974) Holographic Nondestructive Testing. Academic Press, New York

    Google Scholar 

  5. Hurley D, Fortunko C (1997) Determination of the Nonlinear Ultrasonic Parameter β using a Michelson Interferometer. Meas Sci Technol 8

    Google Scholar 

  6. Xiao H, Nagy PB (1998) Enhanced Ultrasonic Detection of Fatigue Cracks by Laser-Induced Crack Closure. Journal of Applied Physics, vol. 83, No. 12

    Google Scholar 

  7. Choquet M, Neron C, Reid B, Viens M, Monchalin JP, Komorowski JP, Gould R (1998) Corrosion detection in aircraft structures using laser-ultrasonics. SPIE Conference on NDE of Aging Aircraft

    Google Scholar 

  8. Scruby C, Drain L (1990) Laser Ultrasonics — Techniques and Applications. Adam Hilger Publishing Ltd, Bristol, England

    Google Scholar 

  9. Shiokawa S, Moriizumi T, Yasuda T (1975) Study of SAW Propagation Characteristics by Frequency-Translated Holography. Applied Physics Letters, vol. 27, No. 8

    Google Scholar 

  10. Blackshire JL, Sathish S (2002) Near-field ultrasonic scattering from surface-breaking cracks. Applied Physics Letters, vol. 80, No. 18

    Google Scholar 

  11. Blackshire JL, Sathish S, Duncan B, Millard M (2002) Real-time, frequency-translated holographic visualization of surface acoustic wave interactions with surface-breaking defects. Optics Letters, vol. 27, No. 12

    Google Scholar 

  12. Hassan W, Nagy PB, (1999) Experimental Investigation of the Grain Noise in Interferometric Detection of Ultrasonic Waves. J. of Nondestructive Evaluation 18(4): 139–147

    Article  Google Scholar 

  13. Reinhart H, Dally J(1970) Materials Evaluation, vol. 30

    Google Scholar 

  14. Buck O, Frandsen J, Marcus H (1976) Fatigue Crack Growth Under Spectrum Loads. ASTM Publishing, Philadelphia

    Google Scholar 

  15. Auld B (1990) Acoustic Fields and Waves in Solids, vols. I and II, Robert E. Krieger Publishing Company, Malabar, Florida

    Google Scholar 

  16. Varadan VK, Varadan VV (1982) Elastic Wave Scattering and Propagation. Ann Arbor Science Publishers, Ann Arbor, Michigan

    Google Scholar 

  17. Achenbach J (1980) Wave Propagation in Elastic Solids. North-Holland Publishing Company, New York

    Google Scholar 

  18. Hecht E (1987) Optics. Addison-Wesley Publishing Company

    Google Scholar 

  19. Hariharan P (1991) Optical Holography. Cambridge University Press

    Google Scholar 

  20. Korpel A (ed) (1990) Selected Papers on Acousto-Optics. SPIE Optical Engineering Press

    Google Scholar 

  21. Goodman J (1968) Introduction to Fourier Optics. McGraw-Hill, New York

    Google Scholar 

  22. Thompson R, Thompson D (1985) Ultrasonics in Nondestructive Evaluation. Proc IEEE 73, pp. 1716

    Google Scholar 

  23. Her S, Lu S (2002) The Diffraction of Elastic Waves on the Tip of Slots. Journal of Nondestructive Evaluation vol.20, 4:133–143

    Article  Google Scholar 

  24. Dai W, Kim J, Rokhlin SI (1999) In-Situ Surface Wave Monitoring of Fatigue Crack Initiation and Propagation. Review of Progress in Quantitative Nondestructive Evaluation, vol. 18

    Google Scholar 

  25. Harker A (1988) Elastic Waves in Solids. Adam Hilger Publishing, Philadelphia

    MATH  Google Scholar 

  26. Bruttomesso D, Jacobs L, Fiedler C (1997) Experimental and Numerical Investigation of the Interaction of Rayleigh Surface Waves with Corners. Journal of Nondestructive Evaluation

    Google Scholar 

  27. Cooper J, Crosbie R, Dewhurst R, McKie A, Palmer S (1986) Surface Acoustic Wave Interactions with Cracks and Slots: A Noncontacting Study using Lasers. IEEE Transactions on Sonics and Ultrasonics, vol. 33, No. 5

    Google Scholar 

  28. Viktorov I (1967) Rayleigh and Lamb Waves. Plenum Press, New York

    Google Scholar 

  29. Oliner A (1978) Acoustic Surface Waves. Springer-Verlag, New York

    Book  Google Scholar 

  30. Cheng A (1994) Evaluation of Surface Fatigue Cracks using Rayleigh Waves. PhD Thesis, Univ. of Nebraska

    Google Scholar 

  31. Achenbach J, Fine M, Komsky I, McGuire S (1992) Ultrasonic Wave Technique to Assess Cyclic-Load Fatigue Damage in Silicon Carbide Whisker Reinforced 2124 Aluminum Alloy Composites. Cyclic Deformation, Fracture, and Nondestructive Evaluation in Advanced Materials, ASTM STP 1157, Philadelphia, pp. 241–250.

    Google Scholar 

  32. Tittmann B, Buck O, Ahlberg L (1980) Surface Wave Scattering from Elliptical Cracks for Failure Prediction. J Appl Phys, vol. 51, No. 1

    Google Scholar 

  33. Tittmann B, Ahlberg L (1986) Rayleigh Wave Diffraction from Surface-Breaking Discontinuities. Appl Phys Lett, vol. 49, No. 20

    Google Scholar 

  34. Lin W, Keer L (1987) Scattering by a Planar Three-Dimensional Crack. J Acoust Soc Am, vol. 82, No. 4

    Google Scholar 

  35. Burdeck D, Achenbach J (1989) Three-Dimensional Elastic Wave Scattering from Surface-Breaking Cracks. J Acoust Soc Am, vol. 86, No. 1

    Google Scholar 

  36. Her S, Lu S (2001) The Diffraction of Elastic Waves on the Tip of Slots. J of NDE, vol. 20, No. 4

    Google Scholar 

  37. Fitzpatrick C (1992) The Erasable Material Bacteria Rhodopsin: Its Characteristics and Uses in Holographic Applications. Practical Holography VI, SPIE, vol. 1667

    Google Scholar 

  38. Ma L (1994) Pitting Effects on the Corrosion Fatigue Life of 7075-T6 Aluminum Alloy. Ph.D. thesis, Univ. of Utah

    Google Scholar 

  39. Kim J, Rokhlin SI (2001) Surface Acoustic Wave Measurements of Small Fatigue Crack Initiated from a Pit. Int J Solids and Structs

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blackshire, J.L. (2004). Interferometric and Holographic Imaging of Surface Wave Patterns for Characterization of Material Degradation. In: Meyendorf, N.G.H., Nagy, P.B., Rokhlin, S.I. (eds) Nondestructive Materials Characterization. Springer Series in Materials Science, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08988-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08988-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07350-2

  • Online ISBN: 978-3-662-08988-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics