Skip to main content

Phylogenetic Relationships and Virulence Evolution in the Genus Bordetella

  • Chapter
Pathogenicity Islands and the Evolution of Pathogenic Microbes

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 264/1))

Abstract

Within the beta-subclass of Proteobacteria, members of the genera Bordetella, Achromobacter and Alcaligenes form a group of closely related organisms (Fig. 1). To date, seven Bordetella species are described, all of which are gram-negative, strictly aerobic coccobacilli with a nonfermentative, asaccharolytic metabolism. They occur exclusively in close association with man or warm-blooded animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akerley BJ, Miller JF (1996) Understanding signal transduction during bacterial infection. Trends Microbiol 4: 141–146

    Article  PubMed  CAS  Google Scholar 

  • Andersson SGE, Kurland CG (1998) Reductive evolution of resident genomes. Trends Microbiol 6: 263–268

    Article  PubMed  CAS  Google Scholar 

  • Antoine R, Alonso S, Raze D, Coutte L, Lesjean S, Willery E, Locht C, Jacob-Dubuisson F (2000a) New virulence-activated and virulence-repressed genes identified by systematic gene inactivation and generation of transcriptional fusions in Bordetella pertussis. J Bacteriol 182: 5902–5905

    Article  PubMed  CAS  Google Scholar 

  • Antoine R, Raze D, Locht C (2000b) Genomics of Bordetella pertussis toxins. Int J Med Microbiol 290: 301–305

    Article  PubMed  CAS  Google Scholar 

  • Arico B, Gross R, Smida J, Rappuoli R (1987) Evolutionary relationships in the genus Bordetella. Mol Microbiol 1: 301–308

    Article  PubMed  CAS  Google Scholar 

  • Arico B, Miller J, Roy C, Stibitz S, Monack D, Falkow S, Gross R, Rappuoli R (1989) Sequences required for the expression of Bordetella pertussis virulence factors share homology with prokaryotic signal transduction proteins. Proc Natl Acad Sci USA 86: 6671–6675

    Article  PubMed  CAS  Google Scholar 

  • Arp LH, Cheville NF (1984) Tracheal lesions in young turkeys infected with Bordetella avium. Am J Vet Res 45: 2196–2201

    PubMed  CAS  Google Scholar 

  • Banemann A, Gross R (1997) Phase variation affects long-term survival of Bordetella bronchiseptica in professional phagocytes. Infect Immun 65: 3469–3473

    PubMed  CAS  Google Scholar 

  • Beall BW, Sanden GN (1995) Cloning and initial characterization of the Bordetella pertussis fur gene. Curr Microbiol 30: 223–226

    Article  PubMed  CAS  Google Scholar 

  • Beattie DT, Mahan MJ, Mekalanos JJ (1993) Repressor binding to a regulatory site in the DNA coding sequence is sufficient to confer transcriptional regulation of the vir-repressed genes (vrg genes) in Bordetella pertussis. J Bacteriol 175: 519–527

    PubMed  CAS  Google Scholar 

  • Beier D, Deppisch H, Gross R (1996) Conserved sequence motifs in the unorthodox BvgS two-component sensor protein of Bordetella pertussis. Mol Gen Genet 252: 169–176

    Article  PubMed  CAS  Google Scholar 

  • Boschwitz JS, van der Heide HG, Mooi FR, Reiman DA (1997) Bordetella bronchiseptica expresses the fimbrial structural subunit gene fimA. J Bacteriol 179: 7882–7885

    Google Scholar 

  • Burns DL (1999) Biochemistry of type IV secretion. Curr Opin Microbiol 2: 25–29

    Article  PubMed  CAS  Google Scholar 

  • Burns EH Jr, Norman JM, Hatcher MD, Bemis DA (1993) Fimbriae and determination of host species specificity of Bordetella bronchiseptica. J Clin Microbiol 31: 1838–1844

    PubMed  Google Scholar 

  • Busse HJ, Auling G (1992) The genera Alcaligenes and “Achromobacter”. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes. Springer, Berlin Heidelberg New York, pp 2544–2555

    Google Scholar 

  • Cookson BT, Vandamme P, Carlson LC, Larson AM, Sheffield JVL, Kersters K, Spach DH (1994)

    Google Scholar 

  • Bacteremia caused by a novel Bordetella species, “B. hinzu” J Clin Microbiol 32:2569–2571

    Google Scholar 

  • Cotter PA, DiRita VJ (2000) Bacterial virulence gene regulation: an evolutionary perspective. Annu Rev

    Google Scholar 

  • Microbiol 54:519–565

    Google Scholar 

  • Cotter PA, Miller JF (1997) A mutation in the Bordetella bronchiseptica bvgS gene results in reduced virulence and increased resistance to starvation, and identifies a new class of Bvg-regulated antigens. Mol Microbiol 24: 671–685

    Article  PubMed  CAS  Google Scholar 

  • Dahllöf I, Baillie H, Kjelleberg S (2000) rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Appl Environ Microbiol 66: 3376–3380

    Google Scholar 

  • DeLey JP, Seger K, Kersters K, Mannheim W, Lievens A (1986) Intra-and intergeneric similaritites of the Bordetella ribosomal ribonucleic acid cistrons: proposal for a new family, Alcaligenaceae. Int J Syst Bacteriol 36: 405–414

    Article  Google Scholar 

  • DeShazer D, Wood GE, Friedman RL (1995) Identification of a Bordetella pertussis regulatory factor required for transcription of the pertussis toxin operon in Eseherichia coli. J Bacteriol 177: 3801–3807

    PubMed  CAS  Google Scholar 

  • Drancourt M, Bollet C, Carlioz A, Martelin R, Gayral JP, Raoult D (2000) 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J Clin Microbiol 38: 3623–3630

    Google Scholar 

  • Ezzell JW, Dobrogosz WJ, Kloos WE, Manclark CR (1981) Phase-shift markers in the genus Bordetella: loss of cytochrome d-629 in phase IV variants. Microbios 31: 171–181

    PubMed  CAS  Google Scholar 

  • Ferry NS (1910) A preliminary report of the bacteria findings in canine distemper. Am Vet Rev 37: 499–504

    Google Scholar 

  • Finn TM, Amsbaugh DF (1998) Vag8, a Bordetella pertussis bvg-regulated protein. Infect Immun 66: 3985–3989

    Google Scholar 

  • Flak TA, Heiss LN, Engle JT, Goldman WE (2000) Synergistic epithelial responses to endotoxin and a naturally occurring muramyl peptide. Infect Immun 68: 1235–1242

    Article  PubMed  CAS  Google Scholar 

  • Foss S, Heyen U, Harder J (1998) Alcaligenes defragrans sp. nov., description of four strains isolated on alkenoic monoterpenes (( + )-menthene, alpha-pinene, 2-carene, and alpha-phellandrene) and nitrate. System Appl Microbiol 21: 237–244

    Google Scholar 

  • Fuchs TM, Deppisch H, Scarlato V, Gross R (1996) A new gene locus of Bordetella pertussis defines a novel family of prokaryotic transcriptional accessory proteins. J Bacteriol 178: 4445–4452

    PubMed  CAS  Google Scholar 

  • Funke G, Hess T, von Graevenitz A, Vandamme P (1996) Characteristics of Bordetella hinzu strains isolated from a cystic fibrosis patient over a 3-year period. J Clin Microbiol 34: 966–969

    PubMed  CAS  Google Scholar 

  • Gadea I, Cuenca-Estrella M, Benito N, Blanco A, Fernandez-Guerrero ML, Valero-Guillen PL, Soriano F (2000) Bordetella hinzü, a “new” opportunistic pathogen to think about. J Infect 40: 298–299

    Google Scholar 

  • Gentry-Weeks CR, Cookson BT, Goldman WE, Rimier RB, Porter SB, Curtiss R III (1988) Dermoncerotic toxin and tracheal cytotoxin, putative virulence factors of Bordetella avium. Infect Immun 56: 1698–1707

    PubMed  CAS  Google Scholar 

  • Gerlach G., von Wintzingerode F, Middendorf B, Gross R (2000) Evolutionary trends in the genus Bordetella. Microbes Infect 3: 61–72

    Article  Google Scholar 

  • Giardina PC, Foster LA, Musser JM, Akerley BJ, Miller JF, Dyer DW (1995) bvg repression of alcaligin synthesis in Bordetella bronchiseptica is associated with phylogenetic lineage. J Bacteriol 177:60586062

    Google Scholar 

  • Goodnow RA (1980) Biology of Bordetella bronchiseptica. Microbiol Rev 44: 722–738

    PubMed  CAS  Google Scholar 

  • Granowitz EV, Keenholtz SL (1998) A pseudoepidemic of Alcaligenes xylosoxidans attributable to contaminated saline. Am J Infect Control 26: 146–148

    Article  PubMed  CAS  Google Scholar 

  • Gross R, Rappuoli R (1988) Positive regulation of pertussis toxin expression. Proc Natl Acad Sci USA 85: 3913–3917

    Article  PubMed  CAS  Google Scholar 

  • Gueirard P, Weber C, LeCoustumier A, Guiso N (1995) Human Bordetella bronchiseptica infection related to contact with infected animals: persistence of bacteria in host. J Clin Microbiol 33: 2002–2006

    PubMed  CAS  Google Scholar 

  • Gueirard P, Le Blay K, Le Coustumier A, Chaby R, Guiso N (1998) Variation in Bordetella bronchiseptica lipopolysaccharide during human infection. FEMS Microbiol Lett 162: 331–337

    Article  PubMed  CAS  Google Scholar 

  • Hanada S, Shigematsu T, Shibuya K, Eguchi M, Hasegawa T, Suda F, Kamagata Y, Kanagawa T, Kurane R (1998) Phylogenetic analysis of trichloroethylene-degrading bacteria newly isolated from soil polluted with this contaminant. J Ferm Bioeng 86: 539–544

    Article  CAS  Google Scholar 

  • Hausman SZ, Burns DL (2000) Use of pertussis toxin encoded by ptx genes from Bordetella bronchiseptica to model the effects of antigenic drift of pertussis toxin on antibody neutralization. Infect Immun 68: 3763–3767

    Article  PubMed  CAS  Google Scholar 

  • Hewlett EL (1995) The genus Bordetella. In: Mandell GL, Douglas RG, Bennett JE (eds) Principles and practice of infectious diseases. Churchill Livingstone, New York, pp 2078–2084

    Google Scholar 

  • Huang Z, Cui Z, Ishii M, IgarashiY (2000) Microflora for efficient degradation of cellulolytic substrate Genbank accession no. AB039335

    Google Scholar 

  • luchi S, Lin EC (1993) Adaptation of Escherichia coli to redox environments by gene expression. Mol Microbiol 9: 9–15

    Article  Google Scholar 

  • Jayarao BM, Wang L (1999) A study on the prevalence of gram-negative bacteria in bulk tank milk. J Dairy Sci 82: 2620–2624

    Article  PubMed  CAS  Google Scholar 

  • Jungnitz H, West NP, Walker MJ, Chhatwal GS, Guzman CA (1998) A second two-component regulatory system of Bordetella bronchiseptica required for bacterial resistance to oxidative stress, production of acid phosphatase, and in vivo persistence. Infect Immun 66: 4640–4650

    PubMed  CAS  Google Scholar 

  • Kania SA, Rajeev S, Burns EH, Odom TF, Holloway SM, Bemis DA (2000) Characterization offimN, a new Bordetella bronchiseptica major fimbrial subunit gene. Gene 256: 149–155

    Article  PubMed  CAS  Google Scholar 

  • Kattar MM, Chavez AP, Limaye AP, Rassoulian-Barret SL, Yarfitz SL, Carlson LC, Houze Y, Swanzy S, Wood BL, Cookson BT (2000) Application of 16S rRNA gene sequencing to identify Bordetella hinzu as the causative agent of fatal septicemia. J Clin Microbiol 38: 789–794

    PubMed  CAS  Google Scholar 

  • Kersters K, Hinz K-H, Hertle A, Segers P, Lievens A, Siegmann O, De Ley J (1984) Bordetella avium sp. nov., isolated from the respiratory tracts of turkeys and other birds. Int J Syst Bacteriol 34: 56–70

    Google Scholar 

  • Kim BJ, Lee SH, Lyu MA, Kim SJ, Bai GH, Chae GT, Kim EC, Cha CY, Kook YH (1999) Identification of mycobacterial species by comparative sequence analysis of the RNA polymerase gene (rpoB). J Clin Microbiol 37: 1714–1720

    PubMed  CAS  Google Scholar 

  • Kiredjian M, Holmes B, Kersters K, Guilvout I, De Ley J (1986) Alcaligenes piechaudii, a new species of the human clinical specimens and the environment. Int J Syst Bacteriol 36: 282–287

    Google Scholar 

  • Kloos WE, Mohapatra N, Dobrogosz WJ, Ezzell JW, Manclark CR (1981) Deoxyribonucleotide sequence relationships among Bordetella species. Int J Syst Bacteriol 31: 173–176

    Article  Google Scholar 

  • Knapp S, Mekalanos JJ (1988) Two trans-acting regulatory genes (vir and mod) control antigenic modulation in Bordetella pertussis. J Bacteriol 170: 5059–5066

    PubMed  CAS  Google Scholar 

  • Kronvall G, Hanson H-S, von Stedingk LV, Törnqvist E, Falsen E (2000) Septic arthritis caused by a gram-negative bacterium representing a new species related to the Bordetella-Alcaligenes complex. APMIS 108: 187–194

    Article  PubMed  CAS  Google Scholar 

  • Krooneman J, Wieringa EB, Moore ER, Gerritse J, Prins RA, Gottschal JC (1996) Isolation of Alcaligenes sp. strain L6 at low oxygen concentrations and degradation of 3-chlorobenzoate via a pathway not involving (chloro)catechols. Appl Environ Microbiol 62: 2427–2434

    PubMed  CAS  Google Scholar 

  • Lai CY, Baumann P, Moran N (1996) The endosymbiont (Buchnera sp.) of the aphid Diuraphis noxia contains plasmids consisting of trpEG and tandem repeats of trpEG pseudogenes. Appl Environ Microbiol 62: 332–339

    PubMed  CAS  Google Scholar 

  • LeBlay K, Gueirard P, Guiso N, Chaby R (1997) Antigenic polymorphism of the lipopolysaccharide from human and animal isolates of Bordetella bronchiseptica. Microbiology 143: 1433–1441

    Article  CAS  Google Scholar 

  • Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger M, Neumaier J, Bachleitner M, Schleifer KH (1998) Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19: 554–568

    Article  PubMed  CAS  Google Scholar 

  • MacMillan DJ, Mau M, Walker MJ (1998) Characterisation of the urease gene cluster in Bordetella

    Google Scholar 

  • bronchiseptica Gene 208:243–251

    Google Scholar 

  • Mandell WF, Garvey GJ, Neu HC (1987) Achromobacter xylosoxidans bacteremia. Rev Infect Dis 9: 1001–1005

    Google Scholar 

  • Manetti R, Arico B, Rappuoli R, Scarlato V (1994) Mutations in the linker region of BvgS abolish response to environmental signals for the regulation of the virulence factors in Bordetella pertussis. Gene 150: 123–127

    Article  PubMed  CAS  Google Scholar 

  • Martinez de Tejada G, Miller JF, Cotter PA (1996) Comparative analysis of the virulence control systems of Bordetella pertussis and Bordetella bronchiseptica. Mol Microbiol 22: 895–908

    Article  Google Scholar 

  • Martinez de Tejada G, Cotter PA, Heininger U, Camilli A, Akerley BJ, Mekalanos JJ, Miller JF (1998) Neither the Bvg phase nor the vrg6 locus of Bordetella pertussis is required for respiratory infection in mice. Infect Immun 66: 2762–2768

    Google Scholar 

  • Matsushika A, Mizuno T (2000) Characterization of three putative sub-domains in the signal-input domain of the ArcB hybrid sensor in Escherichia coli. J Biochem (Tokyo) 127: 855–860

    Article  CAS  Google Scholar 

  • Matthews RC, Preston NW (1997) Bordetella. In: Emmerson AM, Hawkey PM, Gillespie SH (eds) Principles and Practice of Clinical Bacteriology. John Wiley & Sons, Chichester, pp 323–336

    Google Scholar 

  • Mazengia E, Silva EA, Peppe JA, Timperi R, George H (2000) Recovery of Bordetella holmesii from patients with pertussis-like symptoms: use of pulsed-field gel electrophoresis to characterize circulating strains. J Clin Microbiol 38: 2330–2333

    PubMed  CAS  Google Scholar 

  • Merkel TJ, Keith JM (2000) The regulation of gene expression in Bordetella pertussis by quorum sensing. Int J Med Microbiol [Suppl] 30: A3

    Google Scholar 

  • Merkel TJ, Barros C, Stibitz S (1998) Characterization of the bvgR locus of Bordetella pertussis. J Bacteriol 180: 1682–1690

    PubMed  CAS  Google Scholar 

  • Middendorf B, Gross R (1999) Representational difference analysis identifies a strain-specific LPS biosynthesis locus in Bordetella spp. Mol Gen Genet 262: 189–198

    Article  PubMed  CAS  Google Scholar 

  • Miller JF, Johnson SA, Black WJ, Beattie DT, Mekalanos JJ, Falkow S (1992) Constitutive sensory transduction mutations in the Bordetella pertussis bvgS gene. J Bacteriol 174: 970–979

    PubMed  CAS  Google Scholar 

  • Mollet C, Drancourt M, Raoult D (1997) rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol 26: 1005–1011

    Google Scholar 

  • Müller M, Hildebrandt A (1993) Nucleotide sequences of the 23S rRNA genes from Bordetella pertussis, B. parapertussis, B. bronchiseptica and B. avium, and their implications for phylogenetic analysis. Nucleic Acids Res 21: 3320

    Article  PubMed  Google Scholar 

  • Musser JM, Hewlett EL, Peppier MS, Selander RK (1986) Genetic diversity and relationships in populations of Bordetella spp. J Bacteriol 166: 230–237

    PubMed  CAS  Google Scholar 

  • Parton R (1999) Review of the biology of Bordetella pertussis. Biologicals 27: 71–76

    Article  PubMed  CAS  Google Scholar 

  • Perraud AL, Weiss V, Gross R (1999) Signalling pathways in two-component phosphorelay systems. Trends Microbiol 7: 115–120

    Article  PubMed  CAS  Google Scholar 

  • Preston A, Allen AG, Cadisch J, Thomas R, Stevens K, Churcher CM, Badcock KL, Parkhill J, Barrell B, Maskell DJ (1999) Genetic basis for lipopolysaccharide 0-antigen biosynthesis in bordetellae. Infect Immun 67: 3763–3767

    PubMed  CAS  Google Scholar 

  • Porter JF, Wardlaw AC (1993) Long-term survival of Bordetella bronchiseptica in lake water and in buffered saline without added nutrients. FEMS Microbiol Lett 110: 33–36

    Article  PubMed  CAS  Google Scholar 

  • Porter JF, Parton R, Wardlaw AC (1991) Growth and survival of Bordetella bronchiseptica in natural waters and in buffered saline without added nutrients. Appl Environ Microbiol 57: 1202–1206

    PubMed  CAS  Google Scholar 

  • Raffel TR, Register KB, Temple LM (2000) Incidence of Bordetella avium in wild birds as measured by serology and tracheal cultures. abstr. C-57. Abstracts of the 100th General Meeting of the American Society for Microbiology. American Society for Microbiology, Los Angeles, Calif.

    Google Scholar 

  • Rappuoli R (1994) Pathogenicity mechanisms of Bordetella. Curr Top Microbiol Immunol 192: 319–336

    Article  PubMed  CAS  Google Scholar 

  • Reinecke F, Groth T, Heise K-P, Joentgen W, Müller N, Steinbüchel A (2000) Isolation and characterization of an Achromobacter xylosoxidans strain B3 and other bacteria capable to degrade the synthetic chelating agent iminodisuccinate. FEMS Microbiol Lett 188: 41–46

    Article  PubMed  CAS  Google Scholar 

  • Scarlato V, Arico B, Prugnola A, Rappuoli R (1991) Sequential activation and environmental regulation of virulence genes in Bordetella pertussis. EMBO J 10: 3971–3975

    CAS  Google Scholar 

  • Scarlato V, Arico B, Domenighini M, Rappuoli R (1993) Environmental regulation of virulence factors in Bordetella species. Bioessays 15: 99–104

    Article  PubMed  CAS  Google Scholar 

  • Schneider B, Gross R, Haas A (2000) Phagosome acidification has opposite effects on intracellular survival of Bordetella pertussis and B. bronchiseptica. Infect Immun 68: 7039–7048

    Article  PubMed  CAS  Google Scholar 

  • Shelton CB, Crosslin DR, Casey JL, Ng S, Temple LM, Orndorff PE (2000) Discovery, purification, and characterization of a temperate transducing bacteriophage for Bordetella avium. J Bacteriol 182: 61306136

    Google Scholar 

  • Shen Y, Stehmeier LG, Voordouw G (1998) Identification of hydrocarbon-degrading bacteria in soil by reverse sample genome probing. Appl Environ Microbiol 64: 637–645

    PubMed  CAS  Google Scholar 

  • Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. Nature 407: 81–86

    Article  PubMed  CAS  Google Scholar 

  • Stefanelli P, Mastrantonio P, Hausman SZ, Giuliano M, Burns DL (1997) Molecular characterization of two Bordetella bronchiseptica strains isolated from children with cough. J Clin Microbiol 35: 1550–1555

    PubMed  CAS  Google Scholar 

  • Steffen P, Goyard S, Ullmann A (1996) Phosphorylated BvgA is sufficient for transcriptional activation of virulence-regulated genes in Bordetella pertussis. EMBO J 15: 102–109

    CAS  Google Scholar 

  • Stibitz S, Yang MS (1997) Genomic fluidity of Bordetella pertussis assessed by a new method for chromosomal mapping. J Bacteriol 179: 5820–5826

    PubMed  CAS  Google Scholar 

  • Stibitz S, Yang MS (1999) Genomic plasticity in natural populations of Bordetella pertussis. J Bacteriol 181: 5512–5515

    PubMed  CAS  Google Scholar 

  • Tang YW, Hopkins MK, Kolbert CP, Hartley PA, Severance PJ, Persing DH (1998) Bordetella holmesiilike organisms associated with septicemia, endocarditis, and respiratory failure. Clin Infect Dis 26: 389–392

    Google Scholar 

  • Taylor BL, Zhulin IB (1999) PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63: 479–506

    PubMed  CAS  Google Scholar 

  • Unden G, Bongaerts J (1997) Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim Biophys Acta 1320: 217–234

    Article  PubMed  CAS  Google Scholar 

  • Väisänen OM, Weber A, Bennasar A, Rainey FA, Busse H-J, Salkinoja-Salonen MS (1998) Microbial communities of printing paper machines. J Appl Microbiol 84: 1069–1084

    Article  PubMed  Google Scholar 

  • Vandamme P, Hommez J, Vancanneyt M, Monsieurs M, Hoste B, Cookson B, Wirsing von König CH, Kersters K, Blackall PJ (1995) Bordetella hinzu sp. nov., isolated from poultry and humans. Int J Syst Bacteriol 45: 37–45

    Google Scholar 

  • Vandamme P, Heyndrickx M, Vancanneyt M, Hoste B, De Vos P, Falsen E, Kersters K, Hinz KH (1996) Bordetella trematum sp. nov., isolated from wounds and ear infections in humans, and reassessment of Alcaligenes denitrificans Ruger and Tan 1983. Int J Syst Bacteriol 46: 849–858

    Google Scholar 

  • van der Zee A, Groenendijk H, Peeters M, Mooi FR (1996) The differentiation of Bordetella parapertussis and Bordetella bronchiseptica from humans and animals as determined by DNA polymorphism mediated by two different insertion sequence elements suggests their phylogenetic relationship. Int J Syst Bacteriol 46: 640–647

    Article  PubMed  Google Scholar 

  • van der Zee A, Mooi FR, van Embden J, Musser JM (1997) Molecular evolution and host adaptation of Bordetella spp.: Phylogenetic analysis using multilocus enzyme electrophoresis and typing with three insertion sequences. J Bacteriol 179: 6609–6617

    Google Scholar 

  • von Wintzingerode F, Schattke A, Siddiqui RA, Rösick U, Göbel UB, Gross R (2001) Bordetella petrii sp. nov., isolated from an anaerobic bioreactor and emended description of the genus Bordetella. Int J Syst Evol Microbiol 51: 1257–1265

    Google Scholar 

  • Weiss AA (1992) The genus Bordetella. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes. Springer, Berlin Heidelberg New York, pp 2530–2543

    Google Scholar 

  • Weiss AA, Falkow S (1984) Genetic analysis of phase change in Bordetella pertussis. Infect Immun 43: 263–269.

    PubMed  CAS  Google Scholar 

  • Weyant RS, Hollis DG, Weaver RE, Amin MFM, Steigerwalt AG, O’Connor SP, Whitney AM, Daneshvar MI, Moss CW, Brenner DJ (1995) Bordetella holmesii sp. nov., a new gram-negative species associated with septicemia. J Clin Microbiol 33: 1–7

    Google Scholar 

  • Willems R, Paul A, van der Heide HG, ter Avest AR, Mooi FR (1990) Fimbrial phase variation in Bordetella pertussis: a novel mechanism for transcriptional regulation. EMBO J 9: 2803–2809

    CAS  Google Scholar 

  • Woolfrey BF, Moody JA (1991) Human infections associated with Bordetella bronchiseptica. Clin Microbiol Rev 4: 243–255

    PubMed  CAS  Google Scholar 

  • Yabuuchi E, Kawamura Y, Kosako Y, Ezaki T (1998) Emendation of genus Achromobacter and Achromobacter xylosoxidans (Yabuuchi and Yano) and proposal of Achromobacter ruhlandii (Packer and Vishniac) comb. nov., Achromobacter piechaudii (Kiredjian et al.) comb. nov., and Achromobacter xylosoxidans subsp. denitrifi’cans (Rüger and Tan) comb. nov. Microbiol Immunol 42: 429–438

    Google Scholar 

  • Yamamoto S, Harayama S (1995) PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61: 1104–1109

    PubMed  CAS  Google Scholar 

  • Yamamoto S, Harayama S (1998) Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16S rRNA genes. Int J Syst Bacteriol 48: 813–819

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, Kasai H, Arnold DL, Jackson RW, Vivian A, Harayama S (2000) Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146: 2385–2394

    PubMed  CAS  Google Scholar 

  • Yih WK, Silva EA, Ida J, Harrington N, Lett SM, George H (1999) Bordetella holmesii-like organisms isolated from Massachusetts patients with pertussis-like symptoms. Emerg Infect Dis 5: 441–443

    Google Scholar 

  • Yuk MH, Heininger U, Martinez de Tejada G, Miller JF (1998) Human but not ovine isolates of B. parapertussis are highly clonal as determined by PCR-based RAPD fingerprinting. Infection 26: 270–273

    CAS  Google Scholar 

  • Zu T, Manetti R, Rappuoli R, Scarlato V (1996) Differential binding of BvgA to two classes of virulence genes of Bordetella pertussis directs promoter selectivity by RNA polymerase. Mol Microbiol 21: 557–565

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

von Wintzingerode, F., Gerlach, G., Schneider, B., Gross, R. (2002). Phylogenetic Relationships and Virulence Evolution in the Genus Bordetella . In: Hacker, J., Kaper, J.B. (eds) Pathogenicity Islands and the Evolution of Pathogenic Microbes. Current Topics in Microbiology and Immunology, vol 264/1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09217-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09217-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07656-5

  • Online ISBN: 978-3-662-09217-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics