Skip to main content

The Vertebrate Clock: Localisation, Connection and Entrainment

  • Chapter
Physiology and Pharmacology of Biological Rhythms

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 125))

Abstract

Our lives are based around a series of recurrent cycles. Some of these cycles reflect changes in our physical environment, such as the solar day or the passage of the seasons, whilst others are social, for example the alternation between the working week and the weekend/Sabbath, or the imposed schedules of shift work. We are adapted to these cycles and function effectively because our metabolism, physiology and behaviour undergo regular rhythmic changes which are generated by an internal “body clock” synchronised to our environment (Aschoff 1981; Aschoff et al. 1971; Wever 1979; Moore-Ede et al. 1983; Folkard et al. 1985). Should this synchrony break down, our mental and physical performance is impaired and we experience a generalised disaffect (Moore-Ede et al. 1983; van Cauter and Turek 1986; Ehlers et al. 1988; Moore 1991; van den Hoofdakker 1994). Such desynchronisation may occur for two basic reasons. First, the internal processes of the clock which generates and controls bodily rhythms may be disrupted, for example due to disease or as a consequence of old age. Second, when our habits and routines are forcibly altered, for example during jet lag or irregular working schedules, the environment provides conflicting information and the regular progression of internal rhythms may be suspended (Chap. 14, this volume). If we are to understand how we are synchronised to the environment and so identify novel therapies to overcome the problems associated with desynchrony, it is necessary to examine the internal processes which generate biological rhythms and to describe how they are influenced by external cues. The aim of this chapter is to review what is known of the neural basis of the vertebrate clock, how it controls daily rhythms and how it responds to physical and social cues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albers HE, Yogev L, Todd RB, Goldman BD (1985) Adrenal corticoids in hamsters: role in circadian timing. Am J Physiol 248: R434 — R438

    PubMed  CAS  Google Scholar 

  • Armstrong SM (1989) Melatonin and circadian control in mammals. Experientia 45: 932–938

    Article  PubMed  CAS  Google Scholar 

  • Aschoff J (1981) Biological rhythms. Plenum, New York (Handbook of behavioural neurobiology, vol 4 )

    Google Scholar 

  • Aschoff J, Fatranska M, Giedke H (1971) Human circadian rhythms in continuous darkness: entrainment by social cues. Science 171: 213–215

    Article  PubMed  CAS  Google Scholar 

  • Axelrod J (1974) The pineal gland: a neurochemical transducer. Science 184: 1341–1348

    Article  PubMed  CAS  Google Scholar 

  • Bading H, Ginty DD, Greenberg ME (1993) Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science 2260: 181–186

    Article  Google Scholar 

  • Besharse JC, Iuvone PM (1983) Circadian clock in Xenopus eye controlling retinal serotonin N-acetyltransferase. Nature 305: 133–135

    Article  PubMed  CAS  Google Scholar 

  • Bittman EL (1993) The sites and consequences of melatonin binding in mammals. Am Zool 33: 200–211

    CAS  Google Scholar 

  • Bosler O, Beaudet A (1985) VIP neurons as prime synaptic targets for serotonin afferents in rat suprachiasmatic nucleus: a combined radioautographic and immunocytochemical sudy. J Neurocytol 14: 749–763

    Article  PubMed  CAS  Google Scholar 

  • Bredt DS, Snyder SH (1992) Nitric oxide: a novel neuronal messenger. Neuron 8: 3–11

    Article  PubMed  CAS  Google Scholar 

  • Cagnacci A, Elliott JA, Yen SSC (1992) Melatonin: a major regulator of the circadian rhythm of core temperature in humans. J Clin Endocrinol Metab 75: 447–452

    Article  PubMed  CAS  Google Scholar 

  • Cagnacci A, Soldani R, Yen SSC (1993) The effect of light on core body temperature is mediated by melatonin in women. J Clin Endocrinol Metab 76: 1036–1038

    Article  PubMed  CAS  Google Scholar 

  • Cahill GM, Besharse JC (1991) Resetting the circadian clock in cultured Xenopus eyecups: regulation of retinal melatonin rhythms by light and D2 dopamine receptors. J Neurosci 11: 2959–2971

    PubMed  CAS  Google Scholar 

  • Cahill GM, Besharse JC (1993) Circadian clock functions localised in Xenopus retinal photoreceptors. Neuron 10: 573–577

    Article  PubMed  CAS  Google Scholar 

  • Card JP, Moore RY (1984) The suprachiasmatic nucleus of the golden hamster: immunohistochemical analysis of cell and fiber distribution. Neuroscience 13: 415–431

    Article  PubMed  CAS  Google Scholar 

  • Card JP, Whealy ME, Robbins AK, Moore RY, Enquist LW (1991) Two alpha-Herpes virus strains are transported differentially in the rodent visual system. Neuron 6: 957–969

    Article  PubMed  CAS  Google Scholar 

  • Cassone VM (1988) Circadian variation of [14C]2-deoxyglucose uptake within the suprachiasmatic nucleus of the house sparrow, Passer domesticus. Brain Res 459: 178–182

    Article  PubMed  CAS  Google Scholar 

  • Cassone VM, Brooks DS (1991) Sites of melatonin action in the brain of the house sparrow Passer domesticus. J Exp Zool 260: 302–309

    Article  CAS  Google Scholar 

  • Cassone VM, Moore RY (1988) Retinohypothalamic projection and suprachiasmatic nucleus of the house sparrow, Passer domesticus. J Comp Neurol 266: 171–182

    Google Scholar 

  • Cassone VM, Speh JC, Card JP, Moore RY (1988) Comparative anatomy of the mammalian hypothalamic suprachiasmatic nucleus. J Biol Rhythms 3: 71–91

    Article  PubMed  CAS  Google Scholar 

  • Castel M, Belenky M, Cohen S, Ottersen OP, Storm-Mathisen J. (1993) Glutamate-like immunoreactivity in retinal terminals of the mouse suprachiasmatic nucleus. Eur J Neurosci 5: 368–381

    Article  PubMed  CAS  Google Scholar 

  • Cohen RA, Albers HE (1991) Disruption of human circadian and cognitive regulation following a discrete hypothalamic lesion: a case study. Neurobiology 41: 726–729

    CAS  Google Scholar 

  • Colwell CS, Menaker M (1992) NMDA as well as non-NMDA receptor antagonists can prevent the phase-shifting effects of light on the circadian system of the golden hamster J Biol Rhythms 7: 125–136

    CAS  Google Scholar 

  • Cutrera RA, Kalsbeek A, Pevet P (1993) No triazolam-induced expression of Fos protein in raphe nuclei of the male Syrian hamster. Brain Res 602: 14–20

    Article  PubMed  CAS  Google Scholar 

  • Czeisler CA, Kronauer RE, Allan JS, Duffy JF, Jewett ME, Brown EN, Ronda JM (1989) Bright light induction of strong (Type 0) resetting of the human circadian pacemaker. Science 244: 1328–1333

    Article  PubMed  CAS  Google Scholar 

  • Daan S, Pittendrigh CS (1976) A functional analysis of circadian pacemakers in nocturnal rodents. II. The variability of phase response curves. J Comp Physiol [A] 106: 253–266

    Google Scholar 

  • Davis FC, Mannion J (1988) Entrainment of hamster pup circadian rhythms by prenatal melatonin injections to the mother. Am J Physiol 255: R439 - R448

    PubMed  CAS  Google Scholar 

  • Dawson TM, Snyder SH (1994) Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J Neurosci 14: 5147–5159

    PubMed  CAS  Google Scholar 

  • Ding JM, Chen D, Weber ET, Faiman LE, Rea MA, Gillette MU (1994) Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science 266: 1713–1717

    Article  PubMed  CAS  Google Scholar 

  • Dollins AB, Zhdanova IV, Wurtman RI, Lynch HJ, Deng MH (1994) Effect of inducing nocturnal serum melatonin concentrations in daytime on sleep, mood, body temperature and performance. Proc Natl Acad Sci USA 91: 1824–1828

    Article  PubMed  CAS  Google Scholar 

  • Earnest DJ, Sladek CD (1987) Circadian vasopressin release from perifused rat suprachiasmatic explants in vitro: effects of acute stimulation. Brain Res 422: 398–402

    Article  PubMed  CAS  Google Scholar 

  • Ebihara S, Kawamura K (1981) The role of the pineal and the suprachiasmatic nuclei in the control of circadian rhythms of the Java sparrow, Padda orizivora. J Comp Physiol 141: 207–214

    Google Scholar 

  • Ebling FJP, Staley K, Maywood ES, Humby T, Hancock DC, Waters CM, Evan GI, Hastings MH (1991) The role of NMDA-type glutamatergic neurotransmission in the photic induction of immediate-early gene expression in the suprachiasmatic nuclei of the Syrian hamster. J Neuroendocrinol 3: 641–652

    Article  PubMed  CAS  Google Scholar 

  • Edgar DM, Miller JD, Prosser RA, Dean RR, Dement WC (1993) Serotonin and the mammalian circadian system. II. Phase-shifting rat behavioural rhythms with serotonergic agonists. J Biol Rhythms 8: 17–31

    Google Scholar 

  • Ehlers CL, Frank E, Kupfer DJ (1988) Social zeitgebers and biological rhythms. Arch Gen Psychiatry 45: 948–952

    Article  PubMed  CAS  Google Scholar 

  • Elliott JA (1976) Circadian rhythms and photoperiodic time measurement in mammals. Fed Proc 35: 2339–2346

    PubMed  CAS  Google Scholar 

  • Falcon J, Thibault C, Begay V, Zachmann A, Collin J-P (1992) Regulation of the rhythmic melatonin secretion by fish pineal photoreceptor cells. In: Ali MA (ed) Rhythms in fishes. Plenum, New York, pp 167–198

    Chapter  Google Scholar 

  • Folkard S, Hume KI, Minors DS, Waterhouse J M, Watson FL (1985) Independence of the circadian rhythm in alertness from the sleep/wake cycle. Nature 313: 678–679

    Article  PubMed  CAS  Google Scholar 

  • Foster RG, Schalken JJ, Timmers AM, De Grip WJ (1989a) A comparison of some photoreceptor characteristics in the pineal and retina. I. The Japanese quail ( Coturnix coturnix ). J Comp Physiol 165: 553–563

    Google Scholar 

  • Foster RG, Timmers AM, Schalken JJ, De Grip WJ (1989b) A comparison of some photoreceptor characteristics in the pineal and retina. II. The Djungarian hamster ( Phodopus sungorus ). J Comp Physiol 165: 565–572

    Google Scholar 

  • Ginty DD, Bading H, Greenberg ME (1992) Trans-synaptic regulation of gene expression. Curr Opin Neurobiol 2: 312–316

    Article  PubMed  CAS  Google Scholar 

  • Ginty DD, Kornhauser JM, Thompson MA, Bading H, Mayo KE, Takahashi JS, Greenberg ME (1993) Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science 260: 238–241

    Article  PubMed  CAS  Google Scholar 

  • Golombek DA, Ralph MR (1994) KN-62, an inhibitor of Cat+/calmodulin kinase II attenuates circadian responses to light. NeuroReport 5: 1638–1640

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez GA, Montminy MR (1989) Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59: 675–680

    Article  PubMed  CAS  Google Scholar 

  • Grosse J, Loudon A, Hastings MH (1995) Cellular and behavioural responses to light of the circadian system of the tau mutant hamster. Neuroscience 65: 587–597

    Article  PubMed  CAS  Google Scholar 

  • Hakim H, DeBernardo AP, Silver R (1991) Circadian locomotor rhythms, but not photoperiodic responses, survive surgical isolation of the SCN in hamsters. J Biol Rhythms 6: 97–113

    Article  PubMed  CAS  Google Scholar 

  • Hastings MH (1991) Neuroendocrine rhythms. Pharmacol Ther 50: 35–71

    Article  PubMed  CAS  Google Scholar 

  • Hastings MH (1994) Circadian rhythms: what makes the clock tick? Curr Biol 4: 720–723

    Article  PubMed  CAS  Google Scholar 

  • Hastings MH (1995) Circadian rhythms: peering into the molecular clockwork. J Neuroendocrinol 7: 331–340

    Article  PubMed  CAS  Google Scholar 

  • Hastings MH, Herbert J (1986) Neurotoxic lesions of the paraventriculo-spinal projection block the nocturnal rise in pineal melatonin synthesis in the Syrian hamster. Neurosci Lett 69: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Hastings MH, Mead SM, Vindlacheruvu RR, Ebling FJP, Maywood ES, Grosse J (1992) Non-photic phase shifting of the circadian activity rhythm of Syrian hamster: the relative potency of arousal and melatonin. Brain Res 591: 20–26

    Article  PubMed  CAS  Google Scholar 

  • Hastings MH, Ebling FJP, Grosse J, Herbert J, Maywood ES, Mikkelsen JD, Sumova A (1995) Immediate-early genes and the neural basis of circadian entrainment. Ciba Found Symp 183: 175–197

    PubMed  CAS  Google Scholar 

  • Herbert J (1991) The brain and interval timing in psychological and photoperiodic time measurement. Adv Pineal Res 5: 1–12

    Google Scholar 

  • Jacobs BL, Azmitia EC (1992) Structure and function of the brain serotonin system. Physiol Rev 72: 167–229

    Google Scholar 

  • Jan JE, Espezel H, Appleton RE (1994) The treatment of sleep disorders with melatonin. Dev Med Child Neurol 36: 97–107

    Article  PubMed  CAS  Google Scholar 

  • Johnson RF, Moore RY, Morin LP (1988) Loss of entrainment and anatomical plasticity after lesions of the hamster retinohypothalamic tract. Brain Res 460: 297–313

    Article  PubMed  CAS  Google Scholar 

  • Kalsbeek A, Teclemariam-Mesbah R, Pevet P (1993) Efferent projections of the suprachiasmatic nucleus in the golden hamster ( Mesocricetus auratus ). J Comp Neurol 332: 293–314

    Google Scholar 

  • Kim YI, Dudek FE (1991) Intracellular electrophysiological study of suprachiasmatic nucleus neurons in rodents: excitatory synaptic mechanisms. J Physiol (Lond) 444: 269–287

    CAS  Google Scholar 

  • Klein DC, Smoot R, Weller JI, Higa S, Markey SP, Creed GJ, Jacobowitz DM (1983) Lesions of the paraventricular nucleus area of the hypothalamus disrupt the suprachiasmatic-spinal cord circuit in the melatonin rhythm-generating system. Brain Res Bull 10: 647–651

    Article  PubMed  CAS  Google Scholar 

  • Kondo T, Tsinoremas NF, Golden SS, Johnson CH, Kutsuna S, Ishiura M (1994) Circadian clock mutants in cyanobacteria. Science 266: 1233–1236

    Article  PubMed  CAS  Google Scholar 

  • Korf H-W, Oksche A, Ekstrom P, Gery I, Zigler JS, Klien DC (1986) Pinealocyte projections into the mammalian brain revealed with S-antigen antiserum. Science 231: 735–737

    Article  PubMed  CAS  Google Scholar 

  • Kornhauser JM, Nelson DE, Mayo KE, Takahashi JS (1992) Regulation of jun-B messenger RNA and AP-1 activity by light and a circadian clock. Science 255: 1581–1585

    Article  PubMed  CAS  Google Scholar 

  • Lavaille M, Serviere J (1993) Circadian fluctuations in GFAP distribution in the Syrian hamster suprachiasmatic nucleus. Neuroreport 4: 1243–1246

    Article  Google Scholar 

  • Lehman MN, Silver R, Gladstone WR, Kahn RM, Gibson M, Bittman EL (1987) Circadian rhythmicity restored by neural transplant Immunocytochemical characterisation of the graft and its integration with the host brain. J Neurosci 7: 1626–1638

    PubMed  CAS  Google Scholar 

  • Lehman MN, Silver R, Bittman EL (1991) Anatomy of suprachiasmatic nucleus grafts. In: Klein DC, Moore RY, Reppert SM (eds) The suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York, pp 349–374

    Google Scholar 

  • Linkowski P, van Onderbergen A, Kerkhofs M, Bosson D, Mendlewicz J, van Cauter E (1993) Twin study of the 24th cortisol profile: evidence for genetic control of the human circadian clock. Endocrinol Metab 27: E173–E181

    Google Scholar 

  • Liou SY, Shibata S Iwasaki K, Ueki S (1986) Optic nerve stimulation-induced increase of release of 4H-glutamate and 3H-aspartate but not 3H-GABA from the suprachiasmatic nucleus in slices of rat hypothalamus. Brain Res Bull 16: 527–531

    Article  PubMed  CAS  Google Scholar 

  • Lovenberg TW, Baron BM, de Lecea L, Miller JD, Prosser RA, Rea MA, Foye PE, Racke M, Slone AL, Siegel BW, Danielson PR, Sutcliffe JG, Erlander MG (1993) A novel adenylyl cyclase-activating serotonin receptor (5HT-7) implicated in the regulation of mammalian circadian rhythms. Neuron 11: 449–458

    Article  PubMed  CAS  Google Scholar 

  • Lowenstein CJ, Snyder SH (1992) Nitric oxide: a novel biologic messenger. Cell 70:705– 707

    Google Scholar 

  • Mai JK, Kedziora O, Teckhaus L, Sofroniew MV (1991) Evidence for subdivisions in the human suprachiasmatic nucleus. J Comp Neurol 305: 508–525

    Article  PubMed  CAS  Google Scholar 

  • Margraf RR, Lynch GR (1993) Melatonin injections affect circadian behaviour and SCN neurophysiology in Djungarian hamsters. Am J Physiol 33: R615–R621

    Google Scholar 

  • Maywood ES, Bittman EL, Ebling FJP, Barrett P, Morgan PJ, Hastings MH (1995) Regional distribution of iodomelatonin binding sites in the suprachiasmatic nucleus of the Syrian hamster and the Siberian hamster. J Neuroendocrinol 7: 215–223

    Article  PubMed  CAS  Google Scholar 

  • McArthur AJ, Gillette MU, Prosser RA (1991) Melatonin directly resets the rat SCN circadian clock. Brain Res 565: 158–163

    Article  PubMed  CAS  Google Scholar 

  • McCormack CA, Burnside B (1992) A role for endogenous dopamine in circadian regulation of retinal cone movement. Exp Eye Res 55: 1–10

    Article  Google Scholar 

  • Mead S, Ebling FJP, Maywood ES, Humby T, Herbert J, Hastings MH (1992) A nonphotic stimulus causes instantaneous phase-advances of the light entrainable circadian oscillator of the Syrian hamster, but does not induce the expression of c-fos in the suprachiasmatic nuclei. J Neurosci 12: 2516–2522

    PubMed  CAS  Google Scholar 

  • Meijer JH (1991) Integration of visual information by the suprachiasmatic nucleus. In: Klein DC, Moore RY, Reppert SM (eds) The suprachiasmatic nucleus: the mind’s clock.Oxford University Press, New York, pp 107–120

    Google Scholar 

  • Meijer JH, Groos GA (1988) Responsiveness of suprachiasmatic and ventral lateral geniculate neurons to serotonin and imipramine: a microiontophoretic study in normal and imipramine-treated rats. Brain Res Bull 20: 89–96

    Article  PubMed  CAS  Google Scholar 

  • Meijer JH, Rusak B, Ganshirt G (1992) The relationship between light-induced discharge in the suprachiasmatic nucleus and phase shifts of hamster circadian rhythms. Brain Res 598: 257–263

    Article  PubMed  CAS  Google Scholar 

  • Menaker M (1985) Eyes–the second (and third) pineal glands? CIBA Found Symp 117: 78–92

    PubMed  CAS  Google Scholar 

  • Menaker M, Vogelbaum MA (1993) Mutant circadian period as a marker of suprachiasmatic nucleus function. J Biol Rhythms 8: S93–S98

    PubMed  Google Scholar 

  • Menaker M, Hudson DJ, Takahashi JS (1981) Neural and neuroendocrine components of circadian clocks in birds. In: Follett BK, Follett DE (eds) Biological clocks in seasonal reproductive cycles. Wright, Bristol, pp 171–183

    Google Scholar 

  • Mikkelsen JD, Larsen PJ, Ebling FJP (1993) Distribution of N-methyl D-aspartate ( NMDA) receptor mRNAs in the rat suprachiasmatic nucleus. Brain Res 632: 329–333

    Google Scholar 

  • Miller JD (1993) On the nature of the circadian clock in mammals. Am J Physiol 264: R821 - R832

    PubMed  CAS  Google Scholar 

  • Moore RY (1973) Retinohypothalamic projections in mammals: a comparative study. Brain Res 49: 403–409

    Article  PubMed  CAS  Google Scholar 

  • Moore RY (1991) Disorders of human circadian function and the human circadian timing system. In: Klein DC, Moore RY, Reppert SM (eds) The suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York, pp 429–441

    Google Scholar 

  • Moore RY (1992a) The organisation of the human circadian timing system. Prog Brain Res 93: 101–117

    Article  Google Scholar 

  • Moore RY (1992b) The enigma of the geniculohypothalamic tract: why two visual entraining pathways? J Interdise Cycle Res 23: 144–152

    Article  Google Scholar 

  • Moore RY, Lenn NJ (1972) A retinohypothalamic projection in the rat. J Comp Neurol 146: 1–14

    Article  PubMed  CAS  Google Scholar 

  • Moore RY, Speh JC (1993) GABA is the principal neurotransmitter of the circadian system. Neurosci Lett 150: 112–116

    Article  PubMed  CAS  Google Scholar 

  • Moore-Ede MC, Czeisler CA, Richardson GS (1983) Circadian time-keeping in health and disease. N Engl J Med 309: 469–537

    Article  PubMed  CAS  Google Scholar 

  • Morin LP (1994) The circadian visual system. Brain Res Rev 67: 102–127

    Article  Google Scholar 

  • Morin LP, Blanchard JH (1991) Depletion of brain serotonin by 5,7-DHT modifies hamster circadian rhythm response to light. Brain Res 566: 173–185

    Article  PubMed  CAS  Google Scholar 

  • Morin LP, Blanchard J, Moore RY (1992) Intergeniculate leaflet and suprachiasmatic nucleus organisation and connection in the golden hamster. Vis Neurosci 8: 219–230

    Article  PubMed  CAS  Google Scholar 

  • Morin LP, Goodles-Sanchez N, Smale L, Moore RY (1994) Projections of the suprachiasmatic nuclei, subparaventricular zone and retrochiasmatic area in the golden hamster. Neuroscience 61: 391–410

    Article  PubMed  CAS  Google Scholar 

  • Morgan PJ, Barrett P, Howell HE, Helliwell R (1994) Melatonin receptors: localisation, molecular pharmacology and physiological significance. Neurochem Int 24: 101–146

    Article  PubMed  CAS  Google Scholar 

  • Nelson DE, Takahashi JS (1991) Comparison of visual sensitivity for suppression of pineal melatonin and circadian phase-shifting in the golden hamster. Brain Res 554: 272–277

    Article  PubMed  CAS  Google Scholar 

  • Nelson DE, Takahashi JS (1992) Sensitivity and integration in a visual pathway for circadian entrainment in the hamster ( Mesocricetus auratus ). J Physiol (Lond) 439: 115–145

    Google Scholar 

  • Okano T, Yoshizawa T, Fukada Y (1994) Pinopsin is a chicken pineal photoreceptive molecule. Nature 372: 94–97

    Article  PubMed  CAS  Google Scholar 

  • Oksche A (1983) Aspects of evolution of the pineal organ. NATO ASI 65: 15–36

    Google Scholar 

  • Oksche A (1991) The development of the concept of the photoneuroendocrine system: historical perspective. In: Klein DC, Moore RY, Reppert SM (eds) The suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York, pp 514

    Google Scholar 

  • Pierce ME, Sheshberadaran H, Zhang Z, Fox LE, Applebury ML, Takahashi JS (1993) Circadian regulation of iodopsin gene expression in embryonic photoreceptors in retinal cell culture. Neuron 10: 579–584

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh CS (1981) Circadian systems: entrainment. In: Aschoff J (ed) Biological rhythms. Plenum, New York, pp 95–124 (Handbook of behavioural neurobiology, vol 4 )

    Google Scholar 

  • Prosser RA, Gillette MU (1989) The mammalian circadian clock in the suprachiasmatic nuclei is reset in vitro by cAMP. J Neurosci 9: 1073–1081

    PubMed  CAS  Google Scholar 

  • Prosser RA, McArthur AJ, Gillette MU (1989) cGMP induces phase shifts of a mammalian circadian pacemaker at night, in antiphase to cAMP effects. Proc Natl Acad Sci USA 86: 6812–6815

    Google Scholar 

  • Prosser RA, Heller HC, Miller JD (1992) Serotonergic phase shifts of the mammalian circadian clock: effects of tetrodotoxin and high Mgt. Brain Res 573: 336–340

    Article  PubMed  CAS  Google Scholar 

  • Prosser RA, Dean RR, Edgar DM, Heller HC, Miller JD (1993) Serotonin and the mammalian circadian system: I In vitro phase shifts by serotonergic agonists and antagonists. J Biol Rhythms 8: 1–16

    Google Scholar 

  • Ralph MR (1991) Suprachiasmatic nucleus transplant studies using the tau mutation in golden hamsters. In: Klein DC, Moore RY, Reppert SM (eds) The suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York, pp 349–374

    Google Scholar 

  • Ralph MR, Mrosovsky N (1992) Behavioural inhibition of circadian responses to light. J Biol Rhythms 7: 353–360

    Article  PubMed  CAS  Google Scholar 

  • Ralph MR, Foster RG, Davis FC, Menaker M (1989) Transplanted suprachiasmatic nucleus determines circadian period. Science 247: 975–978

    Article  Google Scholar 

  • Rea MA (1989) Light increases Fos-related protein immunoreactivity in the rat suprachiasmatic nuclei. Brain Res Bull 23: 577–581

    Article  PubMed  CAS  Google Scholar 

  • Rea MA, Buckley B, Lutton LM (1993a) Local administration of EAA antagonists blocks light-induced phase shifts and c-fos expression in the hamster SCN. Am J Physiol 265: R1191 — R1198

    PubMed  CAS  Google Scholar 

  • Rea MA, Michel AM, Lutton LM (1993b) Is Fos expression necessary and sufficient to mediate light-induced phase advances of the suprachiasmatic circadian oscillator? J Biol Rhythms 8: S59 - S64

    PubMed  Google Scholar 

  • Rea MA, Glass JD, Colwell CS (1994) Serotonin modulates photic responses in the hamster suprachiasmatic nuclei. J Neurosci 14: 3635–3642

    PubMed  CAS  Google Scholar 

  • Reme CE, Wirz-Justice A, Terman M (1991) The visual input stage of the mammalian circadian pacemaking system: I. Is there a clock in the mammalian eye? J Biol Rhythms 6: 5–30

    Article  PubMed  CAS  Google Scholar 

  • Reppert SM (1992) Pre-natal development of a hypothalamic biological clock. Prog Brain Res 93: 119–131

    Article  PubMed  CAS  Google Scholar 

  • Reppert SM, Weaver DR, Rivkees SA, Stopa EG (1988) Putative melatonin receptors in a human biological clock. Science 242: 78–81

    Article  PubMed  CAS  Google Scholar 

  • Reppert SM, Weaver DR, Ebisawa T (1994) Cloning and characterisation of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron 13: 1177–1185

    Article  PubMed  CAS  Google Scholar 

  • Richter CP (1967) Sleep and activity: their relation to the 24-hour clock. Assoc Res Nerv Ment Dis 45: 8–29

    CAS  Google Scholar 

  • Rivkees SA, Cassone VM, Weaver DR, Reppert SM (1989) Melatonin receptors in chick brain: characterisation and localisation. Endocrinology 125: 363–368

    Article  PubMed  CAS  Google Scholar 

  • Roden M, Koller M, Pirich K, Vierhapper H, Waldhauser F (1993) The circadian melatonin and cortisol secretion pattern in permanent night shift workers. Am J Physiol 64: R261 — R265

    Google Scholar 

  • Rusak B, Zucker I (1979) Neural regulation of circadian rhythms. Physiol Rev 59: 449–526

    PubMed  CAS  Google Scholar 

  • Rusak B, Robertson HA, Wisden W, Hunt SP (1990) Light pulses that shift rhythms induce gene expression in the suprachiasmatic nucleus. Science 243: 1237–1240

    Article  Google Scholar 

  • Schwarz WJ (1991) SCN metabolic activity in vivo. In: Klein DC, Moore RY, Reppert SM (eds) The suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York, pp 144–156

    Google Scholar 

  • Schwartz WJ, Gross RA, Morton MT (1987) The suprachiasmatic nuclei contain a tetrodotoxin-resistant circadian pacemaker. Proc Natl Acad Sci USA 84: 1694–1698

    Article  PubMed  CAS  Google Scholar 

  • Seeburg PH (1993) The molecular biology of mammalian glutamate receptor channels Trends Neurosci 16: 359–370

    CAS  Google Scholar 

  • Selim M, Glass JD, Hauser UE, Rea MA (1993) Serotonergic inhibition of light-induced fos protein expression and extracellular glutamate in the suprachiasmatic nuclei. Brain Res 621: 181–188

    Article  PubMed  CAS  Google Scholar 

  • Sheng M, Thompson MA, Greenberg ME (1991) CREB: a Cat+-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252: 1427–1430

    Article  PubMed  CAS  Google Scholar 

  • Shibata S, Moore RY (1993) Tetrodotoxin does not affect circadian rhythms in neuronal activity and metabolism in rodent suprachiasmatic nucleus in vitro. Brain Res 606: 259–266

    Article  PubMed  CAS  Google Scholar 

  • Shimomura K, Menaker M (1994) Light-induced phase shifts in tau mutant hamsters. J Biol Rhythms 9.97–110

    Google Scholar 

  • Shirakawa T, Moore RY (1994) Glutamate shifts the phase of the circadian neuronal firing rhythm in the rat suprachiasmatic nucleus in vitro. Neurosci Lett 178: 47–50

    Article  PubMed  CAS  Google Scholar 

  • Silver R, LeSauter J, Tresco PA, Lehman MN (1996) A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 382: 810–812

    Article  PubMed  CAS  Google Scholar 

  • Simpson SM, Follett BK (1981) Pineal and hypothalamic pacemakers: their role in regulating circadian rhythms in Japanese quail. J Comp Physiol 144: 381–389

    Article  Google Scholar 

  • Smith RD, Turek FW, Takahashi JS (1992) Two families of phase-response curve characterise the resetting of the hamster circadian clock. Am J Physiol 262: R1149 - R1153

    PubMed  CAS  Google Scholar 

  • Somers RL, Klein DC (1986) Rhodopsin kinase activity in the mammalian pineal gland and other tissues. Science 226: 182–184

    Article  Google Scholar 

  • Sumova A, Ebling FJP, Maywood ES, Herbert J, Hasting MH (1994) Non-photic circadian entrainment is not associated with phosphorylation of the transcriptional regulator CREB within the suprachiasmatic nucleus, but is associated with adrenocortical activation. Neuroendocrinology 59: 579–589

    Article  PubMed  CAS  Google Scholar 

  • Sumova A, Ebling FJP, Herbert J, Maywood ES, Moore E, Hastings MH (1995) Nonphotic entrainment of circadian rhythms. Adv Pineal Res 8: 117–132

    Google Scholar 

  • Sumova A, Maywood ES, Selvage D, Ebling FJP, Hastings MH (1996) Serotonergic antagonists impair arousal-induced phase shifts of the circadian system of the Syrian hamster. Brain Res 709: 88–96

    Article  PubMed  CAS  Google Scholar 

  • Swaab DF, Hofman MA, Honnebeier MBOM (1990) Development of vasopressin neurons in the human suprachiasmatic nucleus in relation to birth. Dev Brain Res 52: 289–293

    Article  CAS  Google Scholar 

  • Takahashi JS, Menaker (1982) Role of suprachiasmatic nuclei in the circadian system of the house sparrow, Passer domesticus. J Neurosci 2: 815–822

    Google Scholar 

  • Takahashi JS, deCoursey PJ, Bauman L, Menaker M (1984) Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms. Nature 308: 186–188

    Article  PubMed  CAS  Google Scholar 

  • Takahashi JS, Murakami N, Nikaido SS, Pratt BL, Robertson LM. (1989) The avian pineal, a vertebrate model system of the circadian oscillator: cellular regulation of circadian rhythms by light, second messengers and macromolecular synthesis. Rec Prog Horm Res 45: 279–352

    PubMed  CAS  Google Scholar 

  • Tanaka M, Ichitani Y, Okamura H, Tanaka Y, Ibata Y (1993) The direct retinal projection to VIP neuronal elements in the rat SCN. Brain Res Bull 31: 637–640

    Article  PubMed  CAS  Google Scholar 

  • Terman JS, Reme CE, Terman M (1993) Rod outer segment disk shedding in rats with lesions of the suprachiasmatic nucleus. Brain Res 605: 256–264

    Article  PubMed  CAS  Google Scholar 

  • Terman M, Reme CE, Wirz-Justice A (1991) The visual input stage of the mammalian circadian pacemaking system: II The effect of light and drugs on retinal function. J Biol Rhythms 6: 31–48

    Google Scholar 

  • Tominaga K, Shibata S, Ueki S, Watanabe S (1992) effects of 5HT-la receptor agonists on the circadian rhythm of wheel-running activity in hamsters. Eur J Pharmacol 214: 79–84

    Google Scholar 

  • Tosini G, Menaker M (1996) Circadian rhythms in cultured mamalian retina. Science 272: 419–421

    Article  PubMed  CAS  Google Scholar 

  • Turek FW (1989) Effects of stimulated physical activity on the circadian pacemaker of vertebrates. J Biol Rhythms 4: 135–147

    Article  PubMed  CAS  Google Scholar 

  • Underwood H (1989) The pineal and melatonin: regulators of circadian function in lower vertebrates. Experientia 45: 914–922

    Article  CAS  Google Scholar 

  • Underwood H, Barrett RK, Siopes T (1990a) The quail’s eye: a biological clock. J Biol Rhythms 5: 257–265

    Article  PubMed  CAS  Google Scholar 

  • Underwood H, Barrett RK, Siopes T (1990b) Melatonin does not link the eyes to the rest of the circadian system in quail: a neural pathway is involved. J Biol Rhythms 5: 349–361

    Article  PubMed  CAS  Google Scholar 

  • van Cauter EV, Turek FW (1986) Depression: a disorder of timekeeping? Perspect Biol Med 29: 511–519

    Google Scholar 

  • Van den Hoofdakker (1994) Chronobiological theories of nonseasonal affective disorders and their implications for treatment. J Biol Rhythms 9: 157–183

    Article  PubMed  Google Scholar 

  • van den Pol AN (1991) The suprachiasmatic nucleus: morphological and cytochemical substrates for cellular interaction. In: Klein DC, Moore RY, Reppert SM (eds) The suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York, pp 17–50

    Google Scholar 

  • van den Pol AN (1991) Glutamate and aspartate immunoreactivity in hypothalamic presynaptic axons. J Neurosci 11: 2087–2101

    PubMed  Google Scholar 

  • van den Pol AN, Dudek FE (1993) Cellular communication in the circadian clock, the suprachiasmatic nucleus. Neuroscience 56: 793–811

    Article  PubMed  Google Scholar 

  • van den Pol AN, Finkbeiner SM, Cornell-Bell AH (1992) Calcium excitability and oscillations in suprachiasmatic nucelus neurons and glia in vitro. J Neurosci 12: 2648–2664

    PubMed  Google Scholar 

  • van den Pol AN, Kogelman L, Ghosh P, Liljelund P, Blackstome C (1994a) Developmental regulation of the hypothalamic metabotropic glutamate receptor mGluR1. J Neurosci 14: 3816–3834

    PubMed  Google Scholar 

  • van den Pol AN, Hermans-Borgmeyer I, Hofer M, Ghosh P, Heinemann S (1994b) Ionotropic glutamate-receptor gene expression in hypothalamus: localisation of AMP, kainate and NMDA receptor RNA with in situ hybridisation. J Comp Neurol 343: 428–444

    Article  PubMed  Google Scholar 

  • Vindlacheruvu RR, Ebling FJP, Maywood ES, Hastings MH (1992) Blockade of glutamatergic neurotransmission in the suprachiasmatic nucleus prevents cellular and behavioural repsonses of the circadian system to light. Eur J Neurosci 4: 673–679

    Article  PubMed  Google Scholar 

  • Viswanathan N, Weaver DR, Reppert SM, Davis FC (1994) Entrainment of the fetal circadian pacemaker by prenatal injections of the dopamine agonist SKF 38393. J Neurosci 14: 5393–5398

    PubMed  CAS  Google Scholar 

  • Vogelbaum MA, Menaker M (1992) Temporal chimaeras produced by hypothalamic transplants. J Neurosci 12: 3619–3627

    PubMed  CAS  Google Scholar 

  • Vollrath L (1981) The pineal gland. In: Oksche A, Volllrath L (eds) Handbuch der mikroskopischen Anatomie des Menschen, vol 4. Springer, Berlin Heidelberg New York, pp 170–190

    Google Scholar 

  • Watanabe K, Koibuchi N, Ohtake H, Yamaoka S (1993) Circadian rhythms of vasopressin release in primary cultures of rat suprachiasmatic nucleus. Brain Res 624: 115–120

    Article  PubMed  CAS  Google Scholar 

  • Watts AG (1991) The efferent projections of the suprachiasmatic nucleus: anatomical insights into the control of circadian rhythms. In: Klein DC, Moore RY, Reppert SM (eds) The suprachiasmatic nucleus: the mind’s clock, pp 77–106

    Google Scholar 

  • Weitzman ED, Boyar RM, Kapen S, Hellman L (1975) The relationship between sleep and sleep stages and neuroendocrine secretion and biological rhythms in man. Rec Prog Horm Res 31: 399–441

    PubMed  CAS  Google Scholar 

  • Welsh DK, Logothetis DE, Meister M, Reppert SM (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14: 697–706

    Article  PubMed  CAS  Google Scholar 

  • Weyer RA (1979) The circadian system of man: results of experiments under temporal isolation. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wollnik F, Brysch W, Uhlmann E, Gillardon F, Bravo R, Zimmerman M, Schlingensiepen KH, Herdegen T (1995) Block of c-Fos and Jun-B expression by anti-sense oligonucleotides inhibits light-induced phase-shifts of the mammalian circadian clock. Eur J Neurosci 7: 388–393

    Article  PubMed  CAS  Google Scholar 

  • Youngstrom TG, Weiss ML, Nunez AA (1987) A retinal projection to the para-ventricular nuclei of the hypothalamus in the Syrian hamster ( Mesocricetus auratus ). Brain Res Bull 19: 747–750

    Google Scholar 

  • Zatz M (1992) Does the circadian pacemaker act through cyclic AMP to drive the melatonin rhythm in chick pineal cells? J Biol Rhythms 7: 301–312

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman NH, Menaker M (1979) The pineal gland: a pacemaker within the circadian system of the house sparrow. Proc Natl Acad Sci USA 76: 999–1003

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hastings, M.H. (1997). The Vertebrate Clock: Localisation, Connection and Entrainment. In: Redfern, P.H., Lemmer, B. (eds) Physiology and Pharmacology of Biological Rhythms. Handbook of Experimental Pharmacology, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09355-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09355-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08265-8

  • Online ISBN: 978-3-662-09355-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics