Skip to main content

The Regulation of eIF4F During Cell Growth and Cell Death

  • Chapter
Signaling Pathways for Translation

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 27))

Abstract

Much effort has been focused on questions concerning the highly regulated processes of cell growth, proliferation and programmed cell death (apoptosis). Hormones, growth factors and ligands exert pleiotypic effects through activation of specific cell-surface receptors, and via transmembrane signalling and activation of common protein kinase/phosphatase cascades inside the cell. These, in turn, trigger an array of cellular responses, culminating in either cell growth and division, differentiation or cell death. One of the obligatory, early responses in all of these processes is a modulation of the rate of protein synthesis, mediated by regulating the phosphorylation of translation initiation factor polypeptides and their association into functional complexes. This chapter will review current knowledge about the regulation of these initiation factor proteins in response to cell growth and cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abid MR, Li Y, Anthony C, De Benedetti A (1999) Translational regulation of ribonucleotide reductase by eukaryotic initiation factor 4E links protein synthesis to the control of DNA replication. J Biol Chem 274:35991–35998

    PubMed  CAS  Google Scholar 

  • Akiri G, Nahari D, Finkelstein Y, Le SY, Elroy-Stein O, Levi BZ (1998) Regulation of vascular endothelial growth factor (VEGF) expression is mediated by internal initiation of translation and alternative initiation of transcription. Oncogene 17:227–236

    PubMed  CAS  Google Scholar 

  • Altmann M, Edery I, Trachsel H, Sonenberg N (1988) Site-directed mutagenesis of the tryptophan residues in yeast eukaryotic initiation factor 4E. J Biol Chem 263:17229–17232

    PubMed  CAS  Google Scholar 

  • Altmann M, Blum S, Pelletier J, Sonenberg N, Wilson TMA, Trachsel H (1990) Translation initiation factor-dependent extracts from Saccharomyces cerevisiae. Biochim Biophys Acta 1050: 155–159

    PubMed  CAS  Google Scholar 

  • Belsham GJ, Sonenberg N (1996) RNA-protein interactions in regulation of picornavirus RNA translation. Microbiol Rev 60:499–511

    PubMed  CAS  Google Scholar 

  • Benne R, Hershey JWB (1978) The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes. J Biol Chem 253:3078–3087

    PubMed  CAS  Google Scholar 

  • Bernstein J, Shefler I, Elroy-Stein O (1995) The translational repression mediated by the plateletderived growth factor 2/c-sis mRNA leader is relieved during megakaryocytic differentiation. J Biol Chem 270:10559–10565

    PubMed  CAS  Google Scholar 

  • Bi X, Goss DJ (2000) Wheat germ poly(A) binding protein increases the ATPase and the RNA helicase activity of translation initiation factors eIF4A, eIF4B and eIF-iso4F. J Biol Chem (in press)

    Google Scholar 

  • Block KL, Vornlocher HP, Hershey JWB (1998) Characterization of cDNAs encoding the p44 and p35 subunits of human translation initiation factor eIF3. J Biol Chem 273:31901–31908

    PubMed  CAS  Google Scholar 

  • Boal TR, Chiorini JA, Cohen RB, Miyamoto S, Frederickson RM, Sonenberg N, Safer B (1993) Regulation of eukaryotic translation initiation factor expression during T-cell activation. Biochim Biophys Acta 1176:257–264

    PubMed  CAS  Google Scholar 

  • Borman AM, Kirchweger R, Ziegler E, Rhoads RE, Skern T, Kean KM (1997) eIF4G and its proteolytic cleavage products: Effect on initiation of protein synthesis from capped, uncapped, and IRES-containing mRNAs. RNA 3:186–196

    PubMed  CAS  Google Scholar 

  • Bushell M, McKendrick L, Janicke RU, Clemens MJ, Morley SJ (1999) Caspase-3 is necessary and sufficient for cleavage of protein synthesis eukaryotic initiation factor 4G during apoptosis. FEBS Lett 451:332–336

    PubMed  CAS  Google Scholar 

  • Bushell M, Poncet D, Marissen WE, Flotow H, Lloyd RE, Clemens MJ, Morley SJ (2000a) Cleavage of polypeptide initiation factor eIF4GI during apoptosis in lymphoma cells: characterisation of an internal fragment generated by caspase-3 cleavage. Cell Death Differ (in press)

    Google Scholar 

  • Bushell M, Wood W, Clemens MJ, Morley SJ (2000b) Changes in the integrity and association of eukaryotic protein synthesis initiation factors during apoptosis. Eur J Biochem 267:1083–1091

    PubMed  CAS  Google Scholar 

  • Cai JY, Yang J, Jones DP (1998) Mitochondrial control of apoptosis: the role of cytochrome c. Biochim Biophys Acta 1366:139–149

    PubMed  CAS  Google Scholar 

  • Carter PS, Jarquin-Pardo M, De Benedetti A (1999) Differential expression of Mycl and Myc2 isoforms in cells transformed by eIF4E: evidence for internal ribosome repositioning in the human c-myc 5’ UTR. Oncogene 18:4326–4335

    PubMed  CAS  Google Scholar 

  • Chappell SA, Edelman GM, Mauro VP (2000) A 9-nt segment of cellular mRNA can function as an internal ribosome entry site (IRES) and when present in linked multiple copies greatly enhances IRES activity. Proc Natl Acad Sci USA 97:1536–1541

    PubMed  CAS  Google Scholar 

  • Clemens MJ, Bushell M, Morley SJ (1998) Degradation of eukaryotic polypeptide chain initiation factor (eIF) 4G in response to induction of apoptosis in human lymphoma cell lines. Oncogene 17:2921–2931

    PubMed  CAS  Google Scholar 

  • Clemens MJ, Bushell M, Jeffrey IW, Pain VM, Morley SJ (2000) Translation initiation factor modifications and the regulation of protein synthesis in apoptotic cells. Cell Death Differ (in press)

    Google Scholar 

  • Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326:1–16

    PubMed  CAS  Google Scholar 

  • Coldwell M, Mitchell SA, Stoneley M, MacFarlane M, Willis AE (2000) Initiation of Apaf-1 translation by internal ribosome entry. Oncogene 19:899–905

    PubMed  CAS  Google Scholar 

  • Craig AWB, Haghighat A, Yu ATK, Sonenberg N (1998) Interaction of polyadenylate-binding protein with the eIF4G homologue PAIP enhances translation. Nature 392:520–523

    PubMed  CAS  Google Scholar 

  • De Benedetti A, Rhoads RE (1990) Overexpression of eukaryotic protein synthesis initiation factor 4E in HeLa cells results in aberrant growth and morphology. Proc Natl Acad Sci USA 87:8212–8216

    PubMed  Google Scholar 

  • De Gregorio E, Preiss T, Hentze MW (1998) Translational activation of uncapped mRNAs by the central part of human eIF4G is 5’ end-dependent. RNA 4:828–836

    PubMed  Google Scholar 

  • De la Cruz J, Kressler D, Linder P (1999) Unwinding RNA in Saccharomyces cerevisiae: DEADbox proteins and related families. Trends Biochem Sci 24:192–198

    PubMed  Google Scholar 

  • Denton RM, Tavaré JM (1995) Does mitogen-activated-protein kinase have a role in insulin action? The cases for and against. Eur J Biochem 227:597–611

    PubMed  CAS  Google Scholar 

  • Dever TE (1999) Translation initiation: adept at adapting. Trends Biochem Sci 24:398–403

    PubMed  CAS  Google Scholar 

  • Deveraux QL, Reed TC (1999) IAP family proteins — suppressors of apoptosis. Genes Dev 13: 239–252

    PubMed  CAS  Google Scholar 

  • Deveraux QL, Leo E, Stennicke HR, Welsh K, Salvesen GS, Reed JC (1999) Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J 18:5242–5251

    PubMed  CAS  Google Scholar 

  • Diggle TA, Moule SK, Avison MB, Flynn A, Foulstone EJ, Proud CG, Denton RM (1996) Both rapamycin-sensitive and insensitive pathways are involved in the phosphorylation of the initiation factor-4E-binding protein (4E-BP1) in response to insulin in rat epididymal fat-cells. Biochem J 316:447–453

    PubMed  CAS  Google Scholar 

  • Duncan RF (1996) Translational control during heat shock. In: Hershey JWB, Mathews MB, Sonenberg N (eds) Translational control. Cold Spring Harbor Laboratory Press, Plainsview, NY, pp 271–294

    Google Scholar 

  • Edery IM, Humbelin M, Darveau A, Lee KA, Milburn S, Hershey JW, Trachsel H (1983) Involvement of eukaryotic initiation factor 4A in the cap recognition process. J Biol Chem 258:11398–11403

    PubMed  CAS  Google Scholar 

  • Flynn A, Proud CG (1995) Serine 209, not serine 53, is the major site of phosphorylation in initiation factor eIF-4E in serum-treated Chinese hamster ovary cells. J Biol Chem 270: 21684–21688

    PubMed  CAS  Google Scholar 

  • Flynn A, Proud CG (1996a) The role of eIF4 in cell proliferation. Cancer Surv 27:293–310

    PubMed  CAS  Google Scholar 

  • Flynn A, Proud CG (1996b) Insulin-stimulated phosphorylation of initiation factor 4E is mediated by the MAP kinase pathway. FEBS Lett 389:162–166

    PubMed  CAS  Google Scholar 

  • Fraser CS, Pain VM, Morley SJ (1999a) The association of initiation factor 4F with poly(A)binding protein is enhanced in serum-stimulated Xenopus kidney cells. J Biol Chem 274: 196–204

    PubMed  CAS  Google Scholar 

  • Fraser CS, Pain VM, Morley SJ (1999b) Cellular stress in Xenopus kidney cells enhances the phosphorylation of eukaryotic translation initiation factor (elF)4E and the association of elF4F with poly(A)-binding protein. Biochem J 342:519–526

    PubMed  CAS  Google Scholar 

  • Gallie DR (1996) Translational control of cellular and viral mRNAs. Plant Mol Biol 32:145–158

    PubMed  CAS  Google Scholar 

  • Gallie DR, Traugh JA (1994) Serum and insulin regulate cap function in 3T3-L1 cells. J Biol Chem 269:7174–7179

    PubMed  CAS  Google Scholar 

  • Galy B, Maret A, Prats AC, Prats H (1999) Cell transformation results in the loss of the densitydependent translational regulation of the expression of fibroblast growth factor 2 isoforms. Cancer Res 59:165–171

    PubMed  CAS  Google Scholar 

  • Gautsch TA, Anthony JC, Kimball SR, Paul GL, Layman DK, Jefferson LS (1998) Availability of eIF4E regulates skeletal muscle protein synthesis during recovery from exercise. Am J Physiol Cell Physiol 274:C406-C414

    CAS  Google Scholar 

  • Gingras A-C, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, Aebersold R, Sonenberg N (1999a) Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev 13:1422–1437

    PubMed  CAS  Google Scholar 

  • Gingras A-C, Raught B, Sonenberg N (1999b) eIF4 initiation factors: effectors on mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68:913–963

    Google Scholar 

  • Goyer C, Altmann M, Lee HS, Blanc A, Deshmukh M, Woolford JL Jr, Trachsel H, Sonenberg N (1993) TIF4631 and TIF4632: Two yeast genes encoding the high-molecular-weight subunits of the cap-binding protein complex (eukaryotic initiation factor 4F) contain an RNA recognition motif-like sequence and carry out an essential function. Mol Cell Biol 13:4860–4874

    PubMed  CAS  Google Scholar 

  • Gradi A, Imataka H, Svitkin YV, Rom E, Raught B, Morino S, Sonenberg N (1998a) A novel functional human eukaryotic translation initiation factor 4G. Mol Cell Biol 18:334–342

    PubMed  CAS  Google Scholar 

  • Gradi A, Svitkin YV, Imataka H, Sonenberg N (1998b) Proteolysis of human eukaryotic translation initiation factor eIF4GII, but not eIF4GI, coincides with the shutoff of host protein synthesis after poliovirus infection. Proc Natl Acad Sci USA 95:11089–11094

    PubMed  CAS  Google Scholar 

  • Gray NK, Wickens M (1998) Control of translation initiation in animals. Annu Rev Cell Dev Biol 14:399–458

    PubMed  CAS  Google Scholar 

  • Grifo JA, Abramson RD, Sutter CA, Merrick WC (1984) RNA-stimulated ATPase activity of eukaryotic initiation factors. J Biol Chem 259:8648–8654

    PubMed  CAS  Google Scholar 

  • Grifo JA, Tahara SM, Morgan MA, Shatkin AJ, Merrick WC (1983) New initiation factor activity required for globin mRNA translation. J Biol Chem 258:5804–5810

    PubMed  CAS  Google Scholar 

  • Haghighat A, Sonenberg N (1997) eIF4G dramatically enhances the binding of eIF4E to the mRNA 5’-cap structure. J Biol Chem 272:21677–21680

    Google Scholar 

  • Haghighat A, Mader S, Pause A, Sonenberg N (1995) Repression of cap-dependent translation by 4E-binding protein 1: Competition with p220 for binding to eukaryotic initiation factor-4E. EMBO J 14:5701–5709

    PubMed  CAS  Google Scholar 

  • Heesom KJ, Denton RM (1999) Dissociation of the eukaryotic initiation factor-4E/4E-BP1 complex involves phosphorylation of 4E-BP1 by an mTOR-associated kinase. FEBS Lett 457:489–493

    PubMed  CAS  Google Scholar 

  • Heesom KJ, Avison MB, Diggle TA, Denton RM (1998) Insulin-stimulated kinase from rat fat cells that phosphorylates initiation factor 4E-binding protein 1 on the rapamycin-insensitive site (serine-111). Biochem J 336:39–48

    PubMed  CAS  Google Scholar 

  • Henis-Korenblit S, Levy-Strumpf N, Goldstaub D, Kimchi A (2000) A novel form of DAP5 protein accumulates in apoptotic cells as a result of caspase cleavage and internal ribosome entry sitemediated translation. Mol Cell Biol 20:496–506

    PubMed  CAS  Google Scholar 

  • Hinnebusch AG (1997) Translational regulation of yeast GCN4 — a window on factors that control initiator-tRNA binding to the ribosome. J Biol Chem 272:21661–21664

    PubMed  CAS  Google Scholar 

  • Holcik M, Lefebvre C, Yeh C, Chow T, Korneluk RG (1999) A new internal-ribosome-entry-site motif potentiates XIAP-mediated cytoprotection. Nat Cell Biol 1:190–192

    PubMed  CAS  Google Scholar 

  • Honda M, Kaneko S, Matsushita E, Kobayashi K, Abell G, Lemon SM (2000) Cell cycle regulation of hepatitis C virus internal ribosome entry site-directed translation. Gastroenterology 118:152–162

    PubMed  CAS  Google Scholar 

  • Hoover DS, Wingett DG, Zhang J, Reeves R, Magnuson NS (1997) Pim-1 protein expression is regulated by its 5’-untranslated region and translation initiation factor eIF-4E. Cell Growth Differ 8:1371–1380

    PubMed  CAS  Google Scholar 

  • Huez I, Créancier L, Audigier S, Gensac MC, Prats AC, Prats H(1998) Two independent internal ribosome entry sites are involved in translation initiation of vascular endothelial growth factor mRNA. Mol Cell Biol 18:6178–6190

    Google Scholar 

  • Hunt SL, Jackson RJ (1999) Polypyrimidine-tract binding protein (PTB) is necessary, but not sufficient, for efficient internal initiation of translation of human rhinovirus-2 RNA. RNA 5:344–359

    PubMed  CAS  Google Scholar 

  • Hunt SL, Hsuan JJ, Totty N, Jackson RJ (1999a) unr, a cellular cytoplasmic RNA-binding protein with five cold-shock domains, is required for internal initiation of translation of human rhinovirus RNA. Genes Dev 13:437–448

    Google Scholar 

  • Hunt SL, Skern T, Liebig HD, Kuechler E, Jackson RJ (1999b) Rhinovirus 2A proteinase mediated stimulation of rhinovirus RNA translation is additive to the stimulation effected by cellular RNA binding proteins. Virus Res 62:119–128

    PubMed  CAS  Google Scholar 

  • Imataka H, Sonenberg N (1997) Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A. Mol Cell Biol 17:6940–6947

    PubMed  CAS  Google Scholar 

  • Imataka H, Gradi A, Sonenberg N (1998) A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J 17:7480–7489

    PubMed  CAS  Google Scholar 

  • Izquierdo JM, Cuezva JM (2000) Internal ribosome entry site functional activity of the 3’untranslated region of the mRNA for the beta subunit of mitochondrial H+ATP synthase. Biochem J 346:849–855

    PubMed  CAS  Google Scholar 

  • Jackson RJ (1995) A comparative overview of initiation site selection mechanisms. In: Hershey JWB, Mathews MB, Sonenberg N (eds) Translational control. Cold Spring Harbor Laboratory Press, Plainsview, NY, pp 71–112

    Google Scholar 

  • Jackson RJ, Wickens M (1997) Translational controls impinging on the 5’-untranslated region and initiation factor proteins. Curr Opin Genet Dev 7:233–241

    PubMed  CAS  Google Scholar 

  • Jackson RJ, Hunt SL, Reynolds JE, Kaminski A (1995) Cap-dependent and cap-independent translation: operational distinctions and mechanistic interpretations. In: Sarnow P (ed) Capindependent translation. Current topics in microbiology and immunology. Springer, Berlin Heidelberg New York, pp 251–290

    Google Scholar 

  • Jacobson A (1996) Poly(A) metabolism and translation: the closed loop model. In: Hershey JWB, Mathews MB, Sonenberg N (eds) Translational control. Cold Spring Harbor Laboratory Press, Plainsview, NY, pp 451–480

    Google Scholar 

  • Jagus R, Joshi B, Barber GN (1999) PKR, apoptosis and cancer. Int J Biochem Cell Biol 31:123–138

    PubMed  CAS  Google Scholar 

  • Jarpe MB, Widmann C, Knall C, Schlesinger TK, Gibson S, Yujiri T, Fanger GR, Gelfand EW, Johnson GL (1998) Anti-apoptotic versus pro-apoptotic signal transduction: checkpoints and stop signs along the road to death. Oncogene 17:1475–1482

    PubMed  CAS  Google Scholar 

  • Joachims M, Van Breugel PC, Lloyd RE (1999) Cleavage of poly(A)-binding protein by enterovirus proteases concurrent with inhibition of translation in vitro. J Virol 73:718–727

    PubMed  CAS  Google Scholar 

  • Johannes G, Carter MS, Eisen MB, Brown PO, Sarnow P(1999) Identification of eukaryotic mRNAs that are translated at reduced cap binding complex eIF4F concentrations using a cDNA microarray. Proc Natl Acad Sci USA 96:13118–13123

    Google Scholar 

  • Joshi B, Cai A-L, Keiper BD, Minich WB, Mendez R, Beach CM, Stepinski J, Stolarski R, Darzynkiewicz E, Rhoads RE (1995) Phosphorylation of eukaryotic protein synthesis initiation factor 4E at Ser-209. J Biol Chem 270:14597–14603

    PubMed  CAS  Google Scholar 

  • Joshi-Barve S, Rychlik W, Rhoads RE (1990) Alteration of the major phosphorylation site of eukaryotic protein synthesis initiation factor 4E prevents its association with the 48 S initiation complex. J Biol Chem 265:2979–2983

    PubMed  CAS  Google Scholar 

  • Kerekatte V, Keiper BD, Badorff C, Cai AL, Knowlton KU, Rhoads RE (1999) Cleavage of poly(A)binding protein by Coxsackie virus 2 A protease in vitro and in vivo: Another mechanism for host protein synthesis shutoff. J Virol 73:709–717

    PubMed  CAS  Google Scholar 

  • Kessler SH, Sachs AB (1998) RNA recognition motif 2 of yeast Pablp is required for its functional interaction with eukaryotic translation initiation factor 4G. Mol Cell Biol 18:51–57

    PubMed  CAS  Google Scholar 

  • Kevil CG, De Benedetti A, Payne DK, Coe LL, Laroux FS, Alexander JS (1996) Translational regulation of vascular permeability factor by eukaryotic initiation factor 4E: Implications for tumor angiogenesis. Int J Cancer 65:785–790

    PubMed  CAS  Google Scholar 

  • Kidd VJ (1998) Proteolytic activities that mediate apoptosis. Annu Rev Physiol 60:533–573

    PubMed  CAS  Google Scholar 

  • Kimball SR, Horetsky RL, Jefferson LS (1998) Implication of eIF2B rather than eIF4E in the regulation of global protein synthesis by amino acids in L6 myoblasts. J Biol Chem 273: 30945–30953

    PubMed  CAS  Google Scholar 

  • Kimball SR, Jurasinski CV, Lawrence JC, Jefferson LS (1997) Insulin stimulates protein synthesis in skeletal muscle by enhancing the association of eIF-4E and eIF-4G. Am.J.Physiol.Cell Physiol. 272:C754–C759

    CAS  Google Scholar 

  • Kirchweger R, Ziegler E, Lamphear BJ, Waters D, Liebig H-D, Sommergruber W, Sobrino F, Hohenadl C, Blaas D, Rhoads RE, Skern T (1994) Foot-and-mouth disease virus leader proteinase: Purification of the Lb form and determination of its cleavage site on eIF-4 gamma. J Virol 68:5677–5684

    PubMed  CAS  Google Scholar 

  • Kleijn M, Scheper GC, Voorma HO, Thomas AAM (1998) Regulation of translation initiation factors by signal transduction. Eur J Biochem 253:531–544

    PubMed  CAS  Google Scholar 

  • Kolupaeva VG, Pestova TV, Hellen CUT, Shatsky IN (1998) Translation eukaryotic initiation factor 4G recognises a specific structural element within the internal ribosome entry site of encephalomyocarditis virus RNA. J Biol Chem 273:18599–18604

    PubMed  CAS  Google Scholar 

  • Koromilas AE, Lazaris-Karatzas A, Sonenberg N (1992) mRNAs containing extensive secondary structure in their 5’ non-coding region translate efficiently in cells overexpressing initiation factor eIF-4E. EMBO J 11:4153–4158

    Google Scholar 

  • Kozak M(1991) An analysis of vertebrate mRNA sequences: Intimations of translational control. J Cell Biol 115:887–903

    PubMed  CAS  Google Scholar 

  • Kozak M (1999) Initiation of translation in prokaryotes and eukaryotes. Gene 234:187–208

    PubMed  CAS  Google Scholar 

  • Lamphear BJ, Panniers R (1990) Cap binding protein complex that restores protein synthesis in heat-shocked Ehrlich cell lysates contains highly phosphorylated eIF-4E. J Biol Chem 265:5333–5336

    PubMed  CAS  Google Scholar 

  • Lamphear BJ, Panniers R (1991) Heat shock impairs the interaction of cap-binding protein complex with 5’ mRNA cap. J Biol Chem 266:2789–2794

    PubMed  CAS  Google Scholar 

  • Lamphear BJ, Kirchweger R, Skern T, Rhoads RE (1995) Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases Implications for cap-dependent and cap-independent translational initiation. J Biol Chem 270:21975–21983

    PubMed  CAS  Google Scholar 

  • Lang CH, Wu DQ, Frost RA, Jefferson LS, Vary TC, Kimball SR (1999) Chronic alcohol feeding impairs hepatic translation initiation by modulating eIF2 and eIF4E. Am J Physiol Endocrinol Metab 277:E805–E814

    CAS  Google Scholar 

  • Laroia G, Cuesta R, Brewer G, Schneider RJ (1999) Control of mRNA decay by heat-shockubiquitin-proteosome pathway. Science 284:499–502

    PubMed  CAS  Google Scholar 

  • Lawrence JC Jr, Abraham RT (1997) PHAS/4E-BPs as regulators of mRNA translation and cell proliferation. Trends Biochem Sci 22:345–349

    PubMed  CAS  Google Scholar 

  • Lazaris-Karatzas A, Montine KS, Sonenberg N (1990) Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5’ cap. Nature 345:544–547

    PubMed  CAS  Google Scholar 

  • Le H, Tanguay RL, Balasta ML, Wei CC, Browning KS, Metz AM, Goss DJ, Gallie DR (1997) Translation initiation factors eIF-iso4G and eIF-4B interact with the poly(A)-binding protein and increase its RNA binding activity. J Biol Chem 272:16247–16255

    PubMed  CAS  Google Scholar 

  • Le SY, Maizel JV (1998) Evolution of a common structural core in the internal ribosome entry sites of picornavirus. Virus Genes 16:25–38

    PubMed  CAS  Google Scholar 

  • Li BDL, Liu L, Dawson M, De Benedetti A (1997) Overexpression of eukaryotic initiation factor 4E (eIF4E) in breast carcinoma. Cancer 79:2385–2390

    PubMed  CAS  Google Scholar 

  • Lin T-A, Kong X, Haystead TAJ, Pause A, Belsham G, Sonenberg N, Lawrence JC Jr (1994) PHASI as a link between mitogen-activated protein kinase and translation initiation. Science 266:653–656

    PubMed  CAS  Google Scholar 

  • Linder P, Slonimski PP (1989) An essential yeast protein, encoded by duplicated genes TIF1 and TIF2 and homologous to the mammalian translation initiation factor eIF-4A, can suppress a mitochondrial missense mutation. Proc Natl Acad Sci USA 86:2286–2290

    PubMed  CAS  Google Scholar 

  • Linder P, Lasko PF, Ashburner M, Leroy P, Neilsen PJ, Nishi K, Schnier J, Slonimski PP (1989) Birth of the DEAD box. Nature 337:121–122

    PubMed  CAS  Google Scholar 

  • Lloyd RE, Jense HG, Ehrenfeld E (1987) Restriction of translation of capped mRNA in vitro as a model for poliovirus-induced inhibition of host-cell protein synthesis relationship to p200 cleavage. J Virol 61:2480–2488

    PubMed  CAS  Google Scholar 

  • Macejak DG, Sarnow P (1991) Internal initiation of translation mediated by the 5’ leader of a cellular mRNA. Nature 353:90–94

    PubMed  CAS  Google Scholar 

  • Mader S, Lee H, Pause A, Sonenberg N (1995) The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4gamma and the translational repressors 4E-binding proteins. Mol Cell Biol 15:4990–4997

    PubMed  CAS  Google Scholar 

  • Manzella JM, Rychlik W, Rhoads RE, Hershey JWB, Blackshear PJ (1991) Insulin induction of ornithine decarboxylase. Importance of mRNA secondary structure and phosphorylation of eucaryotic initiation factors eIF-4B and eIF-4E. J Biol Chem 266:2383–2389

    PubMed  CAS  Google Scholar 

  • Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK (1997) Cocrystal structure of the messenger RNA 5’ cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell 89:951–961

    PubMed  CAS  Google Scholar 

  • Marcotrigiano J, Gingras A-C, Sonenberg N, Burley SK (1999) Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol Cell 3:707–716

    PubMed  CAS  Google Scholar 

  • Marissen WE, Lloyd RE (1998) Eukaryotic translation initiation factor 4G is targeted for proteolytic cleavage by caspase 3 during inhibition of translation in apoptotic cells. Mol Cell Biol 18:7565–7574

    PubMed  CAS  Google Scholar 

  • Marissen WE, Guo Y, Thomas AAM, Matts RL, Lloyd RE (2000) Identification of caspase-3mediated cleavage and functional alteration of eukaryotic initiation factor 2a in apoptosis. J Biol Chem 275:9314–9323

    PubMed  CAS  Google Scholar 

  • Marth JD, Overell RW, Meier KE, Krebs EG, Perlmutter RM (1988) Translational activation of the lck proto-oncogene. Nature 332:171–173

    PubMed  CAS  Google Scholar 

  • Marx SO, Marks AR (1999) Cell cycle progression and proliferation despite 4BP-1 dephosphorylation. Mol Cell Biol 19:6041–6047

    PubMed  CAS  Google Scholar 

  • McKendrick L, Pain VM, Morley SJ (1999) Translation initiation factor 4E. Int J Biochem Cell Biol 31:31–35

    PubMed  CAS  Google Scholar 

  • Merrick WC (1992) Mechanism and regulation of eukaryotic protein synthesis. Microbiol Rev 56:291–315

    PubMed  CAS  Google Scholar 

  • Merrick WC, Hershey JWB (1996) The pathway and mechanism of protein synthesis. In: Hershey JWB, Mathews MB, Sonenberg N (eds) Translational control. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 31–70

    Google Scholar 

  • Methot N, Pause A, Sonenberg N (1994) The translation initiation factor eIF-4B contains an RNAbinding region that is distinct and independent from its ribonucleoprotein consensus sequence. Mol Cell Biol 14:2307–2316

    PubMed  CAS  Google Scholar 

  • Methot N, Song MS, Sonenberg N (1996) A region rich in aspartic acid, arginine, tyrosine and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3. Mol Cell Biol 16:5328–5334

    PubMed  CAS  Google Scholar 

  • Methot N, Rom E, Olsen H, Sonenberg N (1997) The human homologue of the yeast Prtl protein is an integral part of the eukaryotic initiation factor 3 complex and interacts with p170. J Biol Chem 272:1110–1116

    PubMed  CAS  Google Scholar 

  • Meyer K, Petersen A, Niepmann M, Beck E (1995) Interaction of eukaryotic initiation factor eIF4B with a picornavirus internal translation initiation site. J Virol 69:2819–2824

    PubMed  CAS  Google Scholar 

  • Meyuhas O, Avni D, Shama S (1996) Translational control of ribosomal protein mRNAs in eukaryotes. In: Hershey JWB, Mathews MB, Sonenberg N (eds) Translational control. Cold Spring Harbor Laboratory Press, Plainsview, NY, pp 363–388

    Google Scholar 

  • Milburn SC, Hershey JWB, Davies MV, Kelleher K, Kaufman RJ (1990) Cloning and expression of eukaryotic initiation factor 4B cDNA: sequence determination identifies a common RNA recognition motif. EMBO J 9:2783–2790

    PubMed  CAS  Google Scholar 

  • Minich WB, Balasta ML, Goss DJ, Rhoads RE (1994) Chromatographic resolution of in vivo phosphorylated and nonphosphorylated eukaryotic translation initiation factor eIF-4E: Increased cap affinity of the phosphorylated form. Proc Natl Acad Sci USA 91:7668–7672

    PubMed  CAS  Google Scholar 

  • Morino S, Imataka H, Svitkin YV, Pestova TV, Sonenberg N (2000) Eukaryotic translation initiation factor 4E (eIF4E) binding site and the middle one-third of eIF4GI constitute the core domain for cap-dependent translation, and the c-terminal one-third functions as a modulatory region. Mol Cell Biol 20:468–477

    PubMed  CAS  Google Scholar 

  • Morley SJ (1994) Signal transduction mechanisms in the regulation of protein synthesis. Mol Biol Rep 19:221–231

    PubMed  CAS  Google Scholar 

  • Morley SJ (1996) Regulation of components of the translational machinery by protein phosphorylation. In: Clemens MJ (ed) Protein phosphorylation in cell growth regulation. Harwood, Amsterdam, pp 197–224

    Google Scholar 

  • Morley SJ (1997) Signalling through either the p38 or ERK mitogen-activated protein (MAP) kinase pathway is obligatory for phorbol ester and T cell receptor complex (TCR-CD3)- stimulated phosphorylation of initiation factor (eIF) 4E in Jurkat T cells. FEBS Lett 418:327–332

    PubMed  CAS  Google Scholar 

  • Morley SJ, McKendrick L (1997) Involvement of stress-activated protein kinase and p38/RK mitogen-activated protein kinase signaling pathways in the enhanced phosphorylation of initiation factor 4E in NIH 3T9 cells. J Biol Chem 272:17887–17893

    PubMed  CAS  Google Scholar 

  • Morley SJ, Pain VM (1995a) Hormone-induced meiotic maturation in Xenopus oocytes occurs independently of p70s6k activation and is associated with enhanced initiation factor (eIF)-4F phosphorylation and complex formation. J Cell Sci 108:1751–1760

    PubMed  CAS  Google Scholar 

  • Morley SJ, Pain VM (1995b) Translational regulation during activation of porcine peripheral blood lymphocytes: association and phosphorylation of the alpha and gamma subunits of the initiation factor complex eIF-4F. Biochem J 312:627–635

    PubMed  CAS  Google Scholar 

  • Morley SJ, Traugh JA (1990) Differential stimulation of phosphorylation of initiation factors eIF-4F, eIF-4B, eIF-3, and ribosomal protein S6 by insulin and phorbol esters. J Biol Chem 265:10611–10616

    PubMed  CAS  Google Scholar 

  • Morley SJ, Traugh JA (1993) Stimulation of translation in 3T3-L1 cells in response to insulin and phorbol ester is directly correlated with increased phosphate labelling of initiation factor (eIF-) 4F and ribosomal protein S6. Biochimie 75:985–989

    PubMed  CAS  Google Scholar 

  • Morley SJ, Rau M, Kay JE, Pain VM (1993) Increased phosphorylation of eukaryotic initiation factor 4a during early activation of T lymphocytes correlates with increased initiation factor 4F complex formation. Eur J Biochem 218:39–48

    PubMed  CAS  Google Scholar 

  • Morley SJ, Curtis PS, Pain VM (1997) eIF4G: translation’s mystery factor begins to yield its secrets. RNA 3:1085–1104

    PubMed  CAS  Google Scholar 

  • Morley SI, McKendrick L, Bushell M (1998) Cleavage of translation initiation factor 4G (eIF4G) during anti-Fas IgM-induced apoptosis does not require signalling through the p38 mitogenactivated protein (MAP) kinase. FEBS Lett 438:41–48

    PubMed  CAS  Google Scholar 

  • Morley SJ, Jeffrey I, Bushell M, Pain VM, Clemens MJ (2000) Differential requirements for caspase8 activity in the mechanism of phosphorylation of elF2, cleavage of eIF4GI and signaling events associated with the inhibition of protein synthesis in apoptotic Jurkat T cells. FEBS Lett 477:229–236

    PubMed  CAS  Google Scholar 

  • Muckenthaler M, Gray NK, Hentze MW (1998) IRP-1 binding to ferritin mRNA prevents the recruitment of the small ribosomal subunit by the cap-binding complex eIF4F. Mol Cell 2:383–388

    PubMed  CAS  Google Scholar 

  • Nagata S (1997) Apoptosis by death factor. Cell 88:355–365 Naranda T, Strong WB, Menaya J, Fabbri BJ, Hershey JWB (1994) Two structural domains of initiation factor eIF-4B are involved in binding to RNA. J Biol Chem 269:14465–14472

    Google Scholar 

  • Nathan CA, Carter P, Liu L, Li BD, Abreo F, Tudor A, Zimmer SG, De Benedetti A (1997a) Elevated expression of eIF4E and FGF-2 isoforms during vascularization of breast carcinomas. Oncogene 15:1087–1094

    Google Scholar 

  • Nathan CAO, Liu L, Li BD, Abreo FW, Nandy I, De Benedetti A (1997b) Detection of the protooncogene eIF4E in surgical margins may predict recurrence in head and neck cancer. Oncogene 15:579–584

    PubMed  CAS  Google Scholar 

  • Negulescu D, Leong LEC, Chandy KG, Semler BL, Gutman GA (1998) Translation initiation of a cardiac voltage-gated potassium channel by internal ribosome entry. J Biol Chem 273:20109–20113

    PubMed  CAS  Google Scholar 

  • Ohlmann T, Rau M, Morley SJ, Pain VM (1995) Proteolytic cleavage of initiation factor eIF4gamma in the reticulocyte lysate inhibits translation of capped mRNAs but enhances that of uncapped mRNAs. Nucleic Acids Res 23:334–340

    PubMed  CAS  Google Scholar 

  • Ohlmann T, Rau M, Pain VM, Morley SJ (1996) The C-terminal domain of eukaryotic protein synthesis initiation factor (eIF) 4G is sufficient to support cap-independent translation in the absence of eIF4E. EMBO J 15:1371–1382

    PubMed  CAS  Google Scholar 

  • Ohlmann T, Pain VM, Wood W, Rau M, Morley SJ (1997) The proteolytic cleavage of eukaryotic initiation factor (eIF) 4G is prevented by eIF4E binding protein (PHAS-I;4E- BP1) in the reticulocyte lysate. EMBO J 16:844–855

    PubMed  CAS  Google Scholar 

  • Oumard A, Hennecke M, Hauser H, Nourbakhsh M (2000) Translation of NRF mRNA is medaited by highly efficient ribosome entry. Mol Cell Biol 20:2755–2759

    PubMed  CAS  Google Scholar 

  • Pain VM (1996) Initiation of protein synthesis in eukaryotic cells. Eur J Biochem 236:747–771

    PubMed  CAS  Google Scholar 

  • Panniers R, Stewart E, Merrick WC, Henshaw EC (1985) Mechanism of inhibition of polypeptide chain initiation in heat-shocked Ehrlich cells involves reduction of eukaryotic initiation factor 4F activity. J Biol Chem 260:9648–9653

    PubMed  CAS  Google Scholar 

  • Paraskeva E, Gray NK, Schlaeger B, Wehr K, Hentze MW (1999) Ribosomal pausing and scanning arrest as mechanisms of translational regulation from cap-distal iron-responsive elements. Mol Cell Biol 19:807–816

    PubMed  CAS  Google Scholar 

  • Pause A, Sonenberg N (1992) Mutational analysis of a DEAD box RNA helicase: the mammalian translation initiation factor eIF-4A. EMBO J 11:2643–2654

    PubMed  CAS  Google Scholar 

  • Pause A, Sonenberg N (1993) Helicases and RNA unwinding in translation. Curr Opin Struct Biol 3:953–959

    CAS  Google Scholar 

  • Pause A, Belsham GJ, Gingras A-C, Donzé O, Lin T-A, Lawrence JC Jr, Sonenberg N (1994a) Insulindependent stimulation of protein synthesis by phosphorylation of a regulator of 5’-cap function. Nature 371:762–767

    PubMed  CAS  Google Scholar 

  • Pause A, Méthot N, Svitkin Y, Merrick WC, Sonenberg N (1994b) Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in capdependent and cap-independent initiation of translation. EMBO J 13:1205–1215

    PubMed  CAS  Google Scholar 

  • Pestova TV, Hellen CUT (1999) Ribosome recruitment and scanning: what’s new? Trends Biochem Sci 24:85–87

    PubMed  CAS  Google Scholar 

  • Pestova TV, Shatsky IN, Hellen CUT (1996). Functional dissection of eukaryotic initiation factor 4F: The 4A subunit and the central domain of the 4G subunit are sufficient to mediate internal entry of 43 S preinitiation complexes. Mol Cell Biol 16:6870–6878.

    PubMed  CAS  Google Scholar 

  • Pestova TV, Borukhov SI, Hellen CUT (1998) Eukaryotic ribosomes require initiation factors 1 and 1 A to locate initiation codons. Nature 394:854–859

    PubMed  CAS  Google Scholar 

  • Pestova TV, Lomakin IB, Choi SK, Dever TE, Hellen CUT (2000) The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature 403:332–335

    PubMed  CAS  Google Scholar 

  • Peter ME, Heufelder AE, Hengartner MO (1997) Advances in apoptosis research. Proc Natl Acad Sci USA 94:12736–12737

    PubMed  CAS  Google Scholar 

  • Piron M, Vende P, Cohen J, Poncet D (1998) Rotavirus RNA-binding protein NSP3 interacts with eIF4GI and evicts the poly(A) binding protein from eIF4F. EMBO J 17:5811–5821

    PubMed  CAS  Google Scholar 

  • Porter AG (1999) Protein translocation in apoptosis. Trends Cell Biol 9:394–401

    PubMed  CAS  Google Scholar 

  • Poulin F, Gingras AC, Olsen H, Chevalier S, Sonenberg N (1998) 4E-BP3, a new member of the eukaryotic initiation factor 4E-kinding protein family. J Biol Chem 273:14002–14007

    Google Scholar 

  • Pozner A, Goldenberg D, Negreanu V, Le SY, Elroy-Stein O, Levanon D, Groner Y (2000) Transcription-coupled translation control of AML1/RUNX1 is mediated by cap-and internal ribsome entry site-dependent mechanisms. Mol Cell Biol 20:2297–2307

    PubMed  CAS  Google Scholar 

  • Preiss T, Hentze MW (1999) From factors to mechanisms: translation and translational control in eukaryotes. Curr Opin Genet Dev 9:515–521

    PubMed  CAS  Google Scholar 

  • Proud CG, Denton RM (1998) Molecular mechanisms for the control of translation by insulin. Biochem J 328:329–341

    Google Scholar 

  • Ptushkina M, Von der Haar T, Karim MM, McCarthy JEG (1999) Repressor binding to a dorsal regulatory site traps human eIF4E in a high cap-affinity state. EMBO J 18:4068–4075

    PubMed  CAS  Google Scholar 

  • Pyronnet S, Imataka H, Gingras A-C, Fukunaga R, Hunter T, Sonenberg N(1999) Human eukaryotic translation initiation factor 4G (eIF4G) recruits Mnkl to phosphorylate eIF4E. EMBO J 18:270–279

    Google Scholar 

  • Pyronnet S, Vagner S, Bouisson M, Prats AC, Vaysse N, Pradayrol L (1996) Relief of ornithine decarboxylase messenger RNA translational repression induced by alternative splicing of its 5’ untranslated region. Cancer Res 56:1742–1745

    PubMed  CAS  Google Scholar 

  • Rathmell JC, Thompson CB (1999) The central effectors of cell death in the immune system. Annu Rev Immunol 17:781–828

    PubMed  CAS  Google Scholar 

  • Rau M, Ohlmann T, Morley SJ, Pain VM (1996) A re-evaluation of the cap-binding protein, eIF4E, as a rate-limiting factor for initiation of translation in reticulocyte lysate. J Biol Chem 271:8983–8990

    PubMed  CAS  Google Scholar 

  • Raught B, Gingras A-C, Gygi SP, Imataka H, Morino S, Gradi A, Aebersold R, Sonenberg N (2000) Serum-stimulated, rapamycin-sensitive phosphorylation sites in the eukaryotic initiation factor 4GI. EMBO J 19:434–444

    PubMed  CAS  Google Scholar 

  • Ray BK, Lawson TG, Kramer JC, Cladaras MH, Grifo JA, Abramson RD, Merrick WC, Thach RE (1985) ATP-dependent unwinding of messenger RNA structure by eukaryotic initiation factors. J Biol Chem 260:7651–7658

    PubMed  CAS  Google Scholar 

  • Rhoads RE (1993) Regulation of eukaryotic protein synthesis by initiation factors. J Biol Chem 268:3017–3020

    PubMed  CAS  Google Scholar 

  • Rhoads RE (1999) Signal transduction pathways that regulate eukaryotic protein synthesis. J Biol Chem 274:30337–30340

    PubMed  CAS  Google Scholar 

  • Richter-Cook NJ, Dever TE, Hensold JO, Merrick WC (1998) Purification and characterization of a new eukaryotic protein translation factor — eukaryotic initiation factor 4H. J Biol Chem 273: 7579–7587

    PubMed  CAS  Google Scholar 

  • Rinker-Schaeffer CW, Graff JR, De Benedetti A, Zimmer SG, Rhoads RE (1993) Decreasing the level of translation initiation factor 4E with antisense RNA causes reversal of ras-mediated transformation and tumorigenesis of cloned rat embryo fibroblasts. Int J Cancer 55:841–847

    PubMed  CAS  Google Scholar 

  • Roberts LO, Seamons RA, Belsham GJ (1998) Recognition of picornavirus internal ribosome entry sites within cells; influence of cellular and viral proteins. RNA 4:520–529

    PubMed  CAS  Google Scholar 

  • Rogers GW Jr, Richter NJ, Merrick WC (1999) Biochemical and kinetic characterization of the RNA helicase activity of eukaryotic initiation factor 4A. J Biol Chem 274:12236–12244

    PubMed  CAS  Google Scholar 

  • Rosenwald IB, Lazaris-Karatzas A, Sonenberg N, Schmidt EV (1993) Elevated levels of cyclin D 1 protein in response to increased expression of eukaryotic initiation factor 4E. Mol Cell Biol 13:7358–7363

    PubMed  CAS  Google Scholar 

  • Rosenwald IB, Kaspar R, Rousseau D, Gehrke L, Leboulch P, Chen JJ, Schmidt EV, Sonenberg N, London IM (1995) Eukaryotic translation initiation factor 4E regulates expression of cyclin D 1 at transcriptional and post-transcriptional levels. J Biol Chem 270:21176–21180

    PubMed  CAS  Google Scholar 

  • Rosenwald IB, Chen JJ, Wang ST, Savas L, London IM, Pullman J (1999) Upregulation of protein synthesis initiation factor eIF-4E is an early event during colon carcinogenesis. Oncogene 18:2507–2517

    PubMed  CAS  Google Scholar 

  • Rothe M, Pan MG, Henzel WJ, Ayres TM, Goeddel DV (1995) The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 83:1243–1252

    PubMed  CAS  Google Scholar 

  • Rousseau D, Gingras A-C, Pause A, Sonenberg N (1996a) The eIF4E-binding protein-1 and protein-2 are negative regulators of cell growth. Oncogene 13:2415–2420

    PubMed  CAS  Google Scholar 

  • Rousseau D, Kaspar R, Rosenwald I, Gehrke L, Sonenberg N (1996b) Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin D 1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E. Proc Natl Acad Sci USA 93:1065–1070

    PubMed  CAS  Google Scholar 

  • Rowan S, Fisher DE (1997) Mechanisms of apoptotic cell death. Leukemia 11:457–465

    PubMed  CAS  Google Scholar 

  • Rozen F, Edery I, Meerovitch K, Dever TE, Merrick WC, Sonenberg N (1990) Bidirectional RNA helicase activity of eukaryotic initiation factors 4A and 4F. Mol Cell Biol 10:1134–1144

    PubMed  CAS  Google Scholar 

  • Rust RC, Ochs K, Meyer K, Beck E, Niepmann M (1999) Interaction of eukaryotic initiation factor eIF4B with the internal ribosome entry site of foot-and-mouth disease virus is independent of the polypyrimidine tract-binding protein. J Virol 73:6111–6113

    PubMed  CAS  Google Scholar 

  • Rychlik W, Russ MS, Rhoads RE (1987) Phosphorylation site of eukaryotic initiation factor 4E. J Biol Chem 262:10434–10437

    PubMed  CAS  Google Scholar 

  • Sachs AB, Buratowski S(1997) Common themes in translational and transcriptional regulation. Trends Biochem Sci 22:189–192

    Google Scholar 

  • Sachs AB, Davis RW, Kornberg RD (1987) A single domain of yeast poly(A)-binding protein is necessary and sufficient for RNA-binding and cell viability. Mol Cell Biol 7:3268–3276

    PubMed  CAS  Google Scholar 

  • Satoh S, Hijikata M, Handa H, Shimotohno K (1999) Caspase-mediated cleavage of eukaryotic translation initiation factor subunit 2a. Biochem J 342:65–70

    PubMed  CAS  Google Scholar 

  • Scheper GC, Mulder J, Kleijn M, Voorma HO, Thomas AAM, Van Wijk R (1997) Inactivation of eIF2B and phosphorylation of PHAS-I in heat-shocked rat hepatoma cells. J Biol Chem 272:26850–26856

    PubMed  CAS  Google Scholar 

  • Schiavi A, Hudder A, Werner R (1999) Connexin43 mRNA contains a functional internal ribosome entry site. FEBS Lett 464:118–122

    PubMed  CAS  Google Scholar 

  • Schulze-Osthoff K, Ferrari D, Los M, Wesselborg S, Peter ME (1998) Apoptosis signaling by death receptors. Eur J Biochem 254:439–459

    PubMed  CAS  Google Scholar 

  • Sella O, Gerlitz G, Le SY, Elroy-Stein O (1999) Differentiation-induced internal translation of csis mRNA: Analysis of the cis elements and their differentiation- linked binding to the hnRNP C protein. Mol Cell Biol 19:5429–5440

    PubMed  CAS  Google Scholar 

  • Shah OJ, Antonetti DA, Kimball SR, Jefferson LS (1999) Leucine, glutamine and tyrosine reciprocally modulate the translation initiation factors eIF4F and eIF2B in perfused rat liver. J Biol Chem 274:36168–36175

    PubMed  CAS  Google Scholar 

  • Shah OJ, Kimball SR, Jefferson LS (2000) Acute attenuation of translation initiation and protein saynthesis by glucocorticoids in skeletal muscle. Am J Physiol 278:E76–E82

    CAS  Google Scholar 

  • Shantz LM, Coleman CS, Pegg AE (1996) Expression of an ornithine decarboxylase dominantnegative mutant reverses eukaryotic initiation factor 4E-induced cell transformation. Cancer Res 56:5136–5140

    PubMed  CAS  Google Scholar 

  • Sizova DV, Kolupaeva VG, Pestova TV, Shatsky IN, Hellen CUT (1998) Specific interaction of eukaryotic translation initiation factor 3 with the 5’ nontranslated regions of hepatitis C virus and classical swine fever virus RNAs. J Virol 72:4775–4782

    PubMed  CAS  Google Scholar 

  • Sonenberg N (1994) Regulation of translation and cell growth by eIF-4E. Biochimie 76:839–846

    PubMed  CAS  Google Scholar 

  • Sonenberg N (1996) mRNA 5’ cap-binding protein eIF4E and control of cell growth. In: Hershey JWB, Mathews MB, Sonenberg N (eds) Translational control. Cold Spring Harbor Laboratory Press, Plainsview, NY, pp 245–269

    Google Scholar 

  • Stein I, Itin A, Einat P, Skaliter R, Grossman Z, Keshet E (1998) Translation of vascular endothelial growth factor mRNA by internal ribosome entry: Implications for translation under hypoxia. Mol Cell Biol 18:3112–3119

    PubMed  CAS  Google Scholar 

  • Stennicke HR, Salvesen GS (1999) Catalytic properties of the caspases. Cell Death Differ 6:1054–1059

    PubMed  CAS  Google Scholar 

  • Stoneley M, Paulin FEM, Le Quesne JPC, Chappell SA, Willis AE (1998) C-Myc 5’ untranslated region contains an internal ribosome entry segment. Oncogene 16:423–428

    PubMed  CAS  Google Scholar 

  • Stoneley M, Chappell SA, Jopling CL, Dickens M, MacFarlane M, Willis AE (2000a) c-myc protein synthesis is initiated from the internal ribosome entry segment during apoptosis. Mol Cell Biol 20:1162–1169

    Google Scholar 

  • Stoneley M, Subkhankulova T, Le Quesne JPC, Coldwell M, Jopling CL, Belsham G, Willis AE (2000b) Analysis of the c-myc IRES; a potential role for cell type specific trans-acting factors and the nuclear compartment. Nucleic Acids Res 28:687–694

    PubMed  CAS  Google Scholar 

  • Svitkin YV, Gradi A, Imataka H, Morino S, Sonenberg N (1999) Eukaryotic initiation factor 4GII (eIF4GII), but not eIF4GI, cleavage correlates with inhibition of host cell protein synthesis after human rhinovirus infection. J Virol 73:3467–3472

    PubMed  CAS  Google Scholar 

  • Tarun SZ, Sachs AB (1996) Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J 15:7168–7177

    PubMed  CAS  Google Scholar 

  • Tarun SZ, Wells SE, Deardorff JA, Sachs AB (1997) Translation initiation factor eIF4G mediates in vitro poly(A) tail-dependent translation. Proc Natl Acad Sci USA 94:9046–9051

    PubMed  CAS  Google Scholar 

  • Teerink H, Voorma HO, Thomas AAM (1995) The human insulin-like growth factor II leader 1 contains an internal ribosomal entry site. Biochim Biophys Acta 1264:403–408

    PubMed  Google Scholar 

  • Terada N, Franklin RA, Lucas JJ, Blenis J, Gelfand EW (1993) Failure of rapamycin to block proliferation once resting cells have entered the cell cycle despite inactivation of p70 S6 kinase. J Biol Chem 268:12062–12068

    PubMed  CAS  Google Scholar 

  • Terada N, Takase K, Papst P, Nairn AC, Gelfand EW (1995) Rapamycin inhibits ribosomal protein synthesis and induces G1 prolongation in mitogen-activated T lymphocytes. J Immunol 155:3418–3426

    PubMed  CAS  Google Scholar 

  • Tinton SA, Buc-Calderon PM (1999) Hypoxia increases the association of 4E-binding protein 1 with the initiation factor 4E in isolated rat hepatocytes. FEBS Lett 446:55–59

    PubMed  CAS  Google Scholar 

  • Tuxworth WJ, Wada H, Ishibashi Y, McDermott PJ (1999) Role of load in regulating eIF4F complex formation in adult feline cardiocytes. Am J Physiol 277:H 1273-H 1282

    Google Scholar 

  • Vagner S, Gensac M-C, Maret A, Bayard F, Amalric F, Prats H, Prats A-C (1995) Alternative translation of human fibroblast growth factor 2 mRNA occurs by internal entry of ribosomes. Mol Cell Biol 15:35–44

    PubMed  CAS  Google Scholar 

  • Van der Velden AW, Thomas AAM (1999) The role of the 5’ untranslated region of an mRNA in translation regulation during development. Int J Biochem Cell Biol 31:87–106

    PubMed  Google Scholar 

  • Vary TC, Jefferson LS, Kimball SR (1999) Amino acid-induced stimulation of translation initiation in rat skeletal muscle. Am J Physiol 277:E 1077-E 1086

    Google Scholar 

  • Vary TC, Jefferson LS, Kimball SR (2000) Role of eIF4E in stimulation of protein synthesis by IGF1 in perfused rat skeletal muscle. Am J Physiol Endocrinol Metab 278:E58–E64

    PubMed  CAS  Google Scholar 

  • Vries RGJ, Flynn A, Patel JC, Wang XM, Denton RM, Proud CG (1997) Heat shock increases the association of binding protein-1 with initiation factor 4E. J Biol Chem 272:32779–32784

    PubMed  CAS  Google Scholar 

  • Wada H, Ivester CT, Carabello BA, Cooper G, McDermott PJ (1996) Translational initiation factor eIF-4E — a link between cardiac load and protein synthesis. J Biol Chem 271:8359–8364

    PubMed  CAS  Google Scholar 

  • Wallach D, Varfolomeev EE, Malinin NL, Goltsev YV, Kovalenko AV, Boldin MP (1999) Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol 17:331–367

    PubMed  CAS  Google Scholar 

  • Wang XM, Proud CG (1997) p70 S6 kinase is activated by sodium arsenite in adult rat cardiomyocytes: Roles for phosphatidylinositol 3-kinase and p38 MAP kinase. Biochem Biophys Res Commun 238:207–212

    PubMed  CAS  Google Scholar 

  • Wang XM, Flynn A, Waskiewicz AJ, Webb BLJ, Vries RG, Baines IA, Cooper JA, Proud CG (1998) The phosphorylation of eukaryotic initiation factor eIF4E in response to phorbol esters, cell stresses, and cytokines is mediated by distinct MAP kinase pathways. J Biol Chem 273:9373–9377

    PubMed  CAS  Google Scholar 

  • Waskiewicz AJ, Flynn A, Proud CG, Cooper JA (1997) Mitogen-activated protein kinases activate the serine/threonine kinases Mnkl and Mnk2. EMBO J 16:1909–1920

    PubMed  CAS  Google Scholar 

  • Waskiewicz AJ, Johnson JC, Penn B, Mahalingam M, Kimball SR, Cooper JA (1999) Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnkl in vivo. Mol Cell Biol 19:1871–1880

    PubMed  CAS  Google Scholar 

  • Weinstein DC, Honoré E, Hemmati-Brivanlou A (1997) Epidermal induction and inhibition of neural fate by translation initiation factor 4AIII. Development 124:4235–4242

    PubMed  CAS  Google Scholar 

  • Wells SE, Hillner PE, Vale RD, Sachs AB (1998) Circularization of mRNA by eukaryotic translation factors. Mol Cell 2:135–140

    PubMed  CAS  Google Scholar 

  • Whalen SG, Gingras AC, Amankwa L, Mader S, Branton PE, Aebersold R, Sonenberg N (1996) Phosphorylation of eIF-4E on serine 209 by protein kinase C is inhibited by the translational repressors, 4E-binding proteins. J Biol Chem 271:11831–11837

    PubMed  CAS  Google Scholar 

  • Wickens M, Anderson P, Jackson RJ (1997) Life and death in the cytoplasm: Messages from the 3’ end. Curr Opin Genet Dev 7:220–232

    PubMed  CAS  Google Scholar 

  • Widmann C, Gibson S, Johnson GL (1998) Caspase-dependent cleavage of signaling proteins during apoptosis — a turn-off mechanism for anti-apoptotic signals. J Biol Chem 273: 7141–7147

    PubMed  CAS  Google Scholar 

  • Williams-Hill DM, Duncan RF, Nielsen PJ, Tahara SM (1997) Differential expression of the murine eukaryotic translation initiation factor isogenes eIF4AI and eIF4AII is dependent upon cellular growth status. Arch Biochem Biophys 338:111–120

    PubMed  CAS  Google Scholar 

  • Willis AE (1999) Translational control of growth factor and proto-oncogene expression. Int J Biochem Cell Biol 31:73–86

    PubMed  CAS  Google Scholar 

  • Winzen R, Kracht M, Ritter B, Wilhelm A, Chen C-YA, Shyu A-B, Muller M, Gaestel M, Resch K, Holtmann H (1999) The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilisation via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. EMBO J 18:4969–4980

    PubMed  CAS  Google Scholar 

  • Wolf BB, Green DR (1999) Suicidal tendencies: apoptotic cell death by caspase family proteinases. J Biol Chem 274:20049–20052

    PubMed  CAS  Google Scholar 

  • Wyllie AH (1997) Apoptosis and carcinogenesis. Eur J Cell Biol 73:189–197

    PubMed  CAS  Google Scholar 

  • Yang DQ, Brunn GJ, Lawrence JC Jr (1999) Mutational analysis of sites in the translational regulator, PHAS-I, that are selectively phosphorylated by mTOR. FEBS Lett 453:387–390

    PubMed  CAS  Google Scholar 

  • Yoder-Hill J, Pause A, Sonenberg N, Merrick WC (1993) The p46 subunit of eukaryotic initiation factor (eIF)-4F exchanges with eIF-4A. J Biol Chem 268:5566–5573

    PubMed  CAS  Google Scholar 

  • Yoshizawa F, Kimball SR, Jefferson LS (1997) Modulation of translation initiation in rat skeletal muscle and liver in response to food intake. Biochem Biophys Res Commun 240:825–831

    PubMed  CAS  Google Scholar 

  • Yueh A, Schneider RJ (1996) Selective translation initiation by ribosome jumping in adenovirusinfected and heat-shocked cells. Genes Dev 10:1557–1567

    PubMed  CAS  Google Scholar 

  • Zhou BB, Li HL, Yuan JY, Kirschner MW (1998) Caspase-dependent activation of cyclindependent kinases during fas-induced apoptosis in Jurkat cells. Proc Natl Acad Sci USA 95:6785–6790

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morley, S.J. (2001). The Regulation of eIF4F During Cell Growth and Cell Death. In: Rhoads, R.E. (eds) Signaling Pathways for Translation. Progress in Molecular and Subcellular Biology, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09889-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09889-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07505-6

  • Online ISBN: 978-3-662-09889-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics