Skip to main content

Tropical Bees

  • Chapter
The Hot-Blooded Insects
  • 325 Accesses

Abstract

BEES are well known for their endothermic heat generation, and they are subjects of numerous comparative studies. For example, one study of 55 species of bees from 6 families showed that both body mass and thermal environment are important factors in endothermy (Stone and Willmer, 1989). Smaller species generally have a relatively greater rate of heat production (and lower T thx ) per unit mass than larger bees, but rates of heat production are relatively constant per unit mass within any one species, regardless of body mass. This general relation is often blurred by the effects of the thermal regime in the field, however. In general, those species that encounter lower minimum air temperatures have a greater capacity for endothermy at the minimum temperatures to which their thermogenic system is adapted (Stone and Willmer, 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Armbruster, W. S., and K. D. McCormick. 1990. Diel foraging patterns of male euglossine bees: Ecological causes and evolutionary response by plants. Biotropica 22:160–171.

    Article  Google Scholar 

  • Baird, J. M. 1986. A field study of thermoregulation in the carpenter bee Xylocopa virginica virginica (Hymenoptera:Anthophoridae). Physiol. Zool. 59:157–167.

    Google Scholar 

  • Casey, T. M., M. L. May, and K. R. Morgan. 1985. Flight energetics of euglossine bees in relation to morphology and wing stroke frequency. J. Exp. Biol. 116:271–289.

    Google Scholar 

  • Chappell, M. A. 1982. Temperature regulation of carpenter bees (Xylocopa californica) foraging in the Colorado Desert of southern California. Physiol. Zool. 55:267–280.

    Google Scholar 

  • Chappell, M. A. 1984. Temperature regulation and energetics of the solitary bee Centris pallida during foraging and mate competition. Physiol. Zool. 57:215–225.

    Google Scholar 

  • Dressler, R. L. 1968. Pollination in euglossine bees. Evolution 22:202–210.

    Article  Google Scholar 

  • Ellington, C. P., K. E. Machin, and T. M. Casey. 1990. Oxygen consumption of bumblebees in forward flight. Nature 347:472–473.

    Article  Google Scholar 

  • Gerling, D., P. D. Hurd, and A. Hefetz. 1983. Comparative behavioral biology of two Middle East species of carpenter bees (Xylocopa La-treille) (Hymenoptera: Apoidea). Smithsonian Contributions to Zoology, no. 369.

    Google Scholar 

  • Heinrich, B. 1972. Energetics of temperature regulation and foraging in a bumblebee, Bombus terricola Kirby. J. Comp. Physiol. 77:49–64.

    Article  Google Scholar 

  • Heinrich, B. 1975. Thermoregulation and flight energetics of desert insects. In Environmental Physiology of Desert Organisms, ed. N. F. Hadley, pp. 95–105. Stroudsburg, Penn.: Dowden, Hutchinson and Ross.

    Google Scholar 

  • Heinrich, B. 1976. Flowering phenologies: Bog, woodland, and disturbed habitats. Ecology 57:874–899.

    Article  Google Scholar 

  • Heinrich, B. 1980. Mechanisms of body temperature regulation in honeybees, Apis mellifera. R. Regulation of thoracic temperature at high air temperatures. J. Exp. Biol. 85:73–87.

    Google Scholar 

  • Heinrich, B., and S. L. Buchmann. 1986. Thermoregulatory physiology of the carpenter bee, Xylocopa varipuncta. J. Comp. Physiol. B156:557–562.

    Google Scholar 

  • Heinrich, B., and P. H. Raven. 1972. Energetics and pollination ecology. Science 176:597–602.

    Article  PubMed  CAS  Google Scholar 

  • Inouye, D. W. 1975. Flight temperatures of male euglossine bees (Hymenoptera: Apidae: Euglossini). J. Kansas Entomol. Soc. 48:366–370.

    Google Scholar 

  • Janzen, D. H. 1971. Euglossine bees as long-distance pollinators of tropical plants. Science 171:203–205.

    Article  PubMed  CAS  Google Scholar 

  • Kimsey, L. S. 1980. The behavior of male orchid bees (Apidae, Hymenoptera, Insecta) and the question of leks. Anim. Behay. 28:996–1004.

    Article  Google Scholar 

  • Linsley, E. G. 1958. The ecology of solitary bees. Hilgardia 27:543–599.

    Google Scholar 

  • Linsley, E. G. 1960a. Observations on some matinal bees at flowers of Cucurbita, Ipomaea, and Datura in desert areas of New Mexico and southeastern Arizona. J. New York Entomol. Soc. 68:13–20.

    Google Scholar 

  • Linsley, E. G. 1960b. Ethological adaptations of solitary bees for the pollination of desert plants. Proc. Int. Symp. Pollin. 1st,Copenhagen, pp. 189–197.

    Google Scholar 

  • Louw, G. D., and S. W. Nicolson. 1983. Thermal, energetic and nutritional considerations in the foraging and reproduction of the carpenter bee Xylocopa capitata. J. Entomol. Soc. S. Afr. 46:227–240.

    Google Scholar 

  • MacSwain, J. W. 1957. The flight period of Martinapis luteicornis (Cockenell) (Hymenoptera: Apoidea). Pan-Pacific Entomol. 33:70.

    Google Scholar 

  • May, M. L., and T. M. Casey. 1983. Thermoregulation and heat exchange in euglossine bees. Physiol. Zool. 56:541–551.

    Google Scholar 

  • Nicolson, S. W., and G. D. Louw. 1982. Simultaneous measurement of evaporative water loss, oxygen consumption and thoracic temperature during flight in a carpenter bee. J. Exp. Biol. 222:287–296.

    Google Scholar 

  • Stone, G. N., and P. G. Willmer. 1989. Warm-up rates and body temperatures in bees: The importance of body size, thermal regime and phylogeny. J. Exp. Biol. 147:303–328.

    Google Scholar 

  • Wille, A. 1958. A comparative study of the dorsal vessel of bees. Ann. Entomol. Soc. Am. 51:538–546.

    Google Scholar 

  • Willmer, G. P. 1988. The role of insect water balance in pollination ecology: Xylocopa and Calotropis. Oecologia 76:430–438.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Bernd Heinrich

About this chapter

Cite this chapter

Heinrich, B. (1993). Tropical Bees. In: The Hot-Blooded Insects. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10340-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10340-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10342-5

  • Online ISBN: 978-3-662-10340-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics