Skip to main content

Single-Crystal Lithium Niobate Films by Crystal Ion Slicing

  • Chapter
Wafer Bonding

Part of the book series: Springer Series in MATERIALS SCIENCE ((SSMATERIALS,volume 75))

Abstract

Lithium Niobate (LiNbO3) is extensively used in a variety of applications because of its strong electro-optic (EO), photorefractive and nonlinear optical characteristics. Its unique properties and environmental stability have resulted in its incorporation into photo-refractive gratings, holographic recording, and optical frequency conversion devices. In addition, it exhibits strong pyroelectric, piezoelectric and acousto-optic figures-of-merit, and has found wide applicability in acoustic wave transducers, delay lines and filters. In optics, LiNbO3 is widely used in optical modulators, lasers, parametric oscillators and amplifiers, polarization controllers, couplers, detectors, filters and switches, making it a key material in telecommunication systems. The development of optical telecommunications has in fact called forth the need for integrated photonic circuits with different devices and materials. Thus, a hybrid integration of single-crystal LiNbO3 in the form of thin, micrometer-thick films onto other, often non-compatible, platforms, such as silicon, is a very attractive prospect. In this chapter we explore the fabrication of such films by a layer-transfer technique called crystal ion slicing and examine the properties of the films obtained by this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Matthias BT, Remeika JP (1949), Phys Rev 76: 1886

    Google Scholar 

  2. Ballman AA (1965) Growth of piezoelectric and ferroelectric materials by Czochralski technique. J Am Ceram Soc 48: 112

    Article  Google Scholar 

  3. Carruthers JR, Peterson GE, Grasso MA, Bridenbaugh PM (1971) Nonstoichiometry and crystal growth of lithium niobate. J Appl Phys 42: 1846–1851

    Article  ADS  Google Scholar 

  4. Kostritski SM, Sevastyanov OG (1997) Influence of intrinsic defects on light-induced changes in the refractive index of lithium niobate crystals. Appl Phys B 65: 527–533

    Article  ADS  Google Scholar 

  5. Fujiwara T, Takahashi M, Ohama M, Ikushima IJ, Furukawa Y, Kitamura K (1999) Comparison of electro-optic effect between stoichiometric and congruent LiNbO3. Electron Lett 35: 499–501

    Article  Google Scholar 

  6. Savage A (1966) Pyroelectricity and spontaneous polarization in LiNbO3. J Appl Phys 37: 3071–3072

    Article  ADS  Google Scholar 

  7. Warner AW, Onoe M, Coquin GA (1967) Determination of elastic and piezoelectric constants for crystals in class (3m). J Acoust Soc Am 42: 1223–1231

    Article  ADS  Google Scholar 

  8. Smith RT, Welsh FS (1971) Temperature dependence of elastic, piezoelectric, and electric constants of lithium tantalate and lithium niobate. J Appl Phys 42: 2219–2230

    Article  ADS  Google Scholar 

  9. Weis RS, Gaylord TK (1985) Lithium niobate: summary of physical properties and crystal structure. Appl Phys A 37: 191–203

    Article  ADS  Google Scholar 

  10. Kuz’minov Y-S (1999) Lithium niobate crystals, physical-chemical aspects and technology. Cambridge International Science Publishing, Cambridge

    Google Scholar 

  11. Edwards GJ, Lawrence M (1984) A temperature-dependent dispersion for congruently grown lithium niobate. Opt Quantum Electron 16: 373–375

    Article  Google Scholar 

  12. Dmitriev VG, Gurzadyan G, Nikogosyan DN (1996) Handbook of nonlinear optical crystals. 2nd edn, Springer, New York

    Google Scholar 

  13. Jundt DH (1997) Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate. Optics Lett 22: 1553–1555

    Article  ADS  Google Scholar 

  14. Nye JF (1985) Physical properties of crystals. Oxford University Press, Oxford

    Google Scholar 

  15. Kogelnik H (1990) Theory of optical waveguides. In: Tamir T (ed) Guided-wave optoelectronics. Springer, New York

    Google Scholar 

  16. Yariv A, Yeh P (1983) Optical waves in crystals. John Wiley & Sons, New York

    Google Scholar 

  17. Mendez A, Garcia-Cabanes A, Dieguez E, Cabrera JM (1999) Wavelength dependence of electro-optic coefficients in congruent quasi-stoichiometric LiNbO3. Electron Lett 35: 498–499

    Article  Google Scholar 

  18. Parameswaran K, Chou MH, Fejer MM, Brener I, Kawanishi S (2000) Waveguide frequency mixers for all-optical signal processing. In: Nonlinear Optics: Materials, Fundamentals, and Applications, Tech Dig, Trends in Optics and Photonics vol 46: 156–158

    Google Scholar 

  19. Boyd RW (1992), Nonlinear optics, Academic Press, San Diego

    Google Scholar 

  20. Imeshev G, Arbore MA, Kasriel S, Fejer MM (2000) Pulse shaping and compression by second-harmonic generation with quasi-phase-matching gratings in the presence of arbitrary dispersion. J Opt Soc Am B 17: 1420–1437

    Article  ADS  Google Scholar 

  21. Ewbank MD, Rosker MJ, Bennett GL (1997) Frequency tuning a mid-infrared optical parametric oscillator by the electro-optic effect. J Opt Soc Am B 14: 666–671

    Article  ADS  Google Scholar 

  22. Sakashita Y, Segawa HJ (1995) Preparation and characterization of LiNbO3 thin films produced by chemical-vapor deposition. Appl Phys 77: 5995–5999

    Google Scholar 

  23. Hu GD, Xu JB, Wilson 1H, Cheung WY, Ke N, Wong SP (1999) Effects of a Bi4Ti3O12 buffer layer on SrBi2Ta2O9 thin films prepared by metalorganic decomposition. Appl Phys Lett 74: 3711–3713

    Google Scholar 

  24. Lansiaux X, Dogheche E, Remiens D, Guillox-viry M, Perrin A, Puterana R (2001) LiNbO3 thick films grown on sapphire by using a multistep sputtering process. J Appl Phys 90: 5274–5276

    Article  ADS  Google Scholar 

  25. Veignant F, Gandais M, Aubert P, Garry G (1999) Structural evolution of lithium niobate deposited on sapphire (0001): from early islands to continuous films. J Cryst Growth 196: 141–143

    Article  ADS  Google Scholar 

  26. Yoon JG, Kim K (1996) Growth of highly textured LiNbO3 thin film on Si with MgO buffer layer through the sol-gel process. Appl Phys Lett 68: 2523–2545

    Article  ADS  Google Scholar 

  27. Griffel G, Ruschin R, Croitoru N (1989) Linear electro-optic effect in sputtered polycrystalline LiNbO3. Appl Phys Lett 54: 1385–1387

    Article  ADS  Google Scholar 

  28. Levy M, Osgood JRM, Liu R, Cross LE, Cargill, Ill GS, Kumar A, Bakhru H (1998) Fabrication of single-crystal lithium niobate films by crystal ion slicing. Appl Phys Lett 73: 2293–2295

    Article  ADS  Google Scholar 

  29. Levy M, Osgood JRM, Kumar A, Bakhru H (1997) Epitaxial lift off of thin oxide layers: yttrium iron garnets onto GaAs. Appl Phys Lett 71: 2617–2619

    Article  ADS  Google Scholar 

  30. Radojevic AM, Levy M, Osgood JRM, Kumar A, Bakhru H, Tian C, Evans C (1999) Large etch selectivity in epitaxial lift-off of thin films of LiNbO3. Appl Phys Lett 74: 3197–3199

    Article  ADS  Google Scholar 

  31. Izuhara T, Levy M, Osgood JRM (2000) Direct wafer bonding and transfer of 10—lamthick magnetic garnet films onto semiconductor surfaces. Appl Phys Lett 76: 1261–1263

    Article  ADS  Google Scholar 

  32. Levy M, Osgood JRM, Bhalla AS, Guo R, Cross LE, Kumar A, Sankaran S, Bakhru H (2000) Stress tuning in crystal ion slicing to form single-crystal potassium tantalate films Appl Phys Lett 77: 2124–2126

    Google Scholar 

  33. Izuhara T, Levy M, Osgood JRM, Reeves ME, Wang YG, Roy AN, Bakhru H (2002) Low-loss crystal ion sliced single-crystal potassium tantalate films. Appl Phys Lett 80: 1046–1048

    Article  ADS  Google Scholar 

  34. Gheorma IL, Izuhara T, Osgood JRM, Roy AN, Bakhru H (2002) Single crystal barium titanate thin film fabrication by ion slicing. unpublished work

    Google Scholar 

  35. Levy M, Ghimire S, Bandyopadhyay AK, Hong YK, Moon K (2002) PZN-PT single crystal thin film monomorph actuator. Ferroelectric Lett 29: 29–40

    Article  Google Scholar 

  36. Spanier JE, Levy M, Herman IP, Osgood JRM, Bhalla AS (2001) Single-crystal, mesoscopic films of PZN-PT: formation and micro-Raman diagnosis. Appl Phys Lett 79: 1510–1512

    Article  ADS  Google Scholar 

  37. Osgood JRM, Radojevic AM, Levy M, Bakhru H (2000) Slicing dielectrics with ions: a new processing technique for electronic and optoelectronic materials integration. In: Amer Inst Phys Proc of XVI Int Conf on the Applications of Accelerators in Research and Industry, CAARI 2000 in November, Denton, TX

    Google Scholar 

  38. Townsend PD (1990) An overview of ion-implanted optical waveguide profiles. Nucl Instr Meth Phys Res B 46: 18–25

    Article  ADS  Google Scholar 

  39. Fluck D, Gunter P (2000) Second-harmonic generation in potassium niobate waveguides. IEEE J Sel Top Quantum Electron 6: 122–131

    Article  Google Scholar 

  40. Zhang L, Chandler PJ, Townsend PD, Thomas PA (1992) Helium ion implanted optical waveguides in KTiOPO4. Electron Lett 28: 650–651

    Article  ADS  Google Scholar 

  41. Zhang L, Chandler Pi, Townsend PD (1991) Extra ‘strange’ modes in ion implanted lithium niobate waveguides. J Appl Phys 70: 1185–1187

    Article  ADS  Google Scholar 

  42. Davis GM, Zhang L, Chandler PJ, Townsend PD (1993) Fabrication of planar optical waveguides in LiB3O5 by 2 MeV He+ ion implantation. IEEE Photon Technol Lett 5: 430–432

    Article  ADS  Google Scholar 

  43. Lindhard J, Schraff M, Schiott HE (1963) Range concepts and heavy ion ranges. MatFys Medd Kensk Dan Vid Selsk 33: 1–42

    Google Scholar 

  44. Townsend PD, Chandler PJ, Zhang L (1994) Optical effects of ion implantation. In: Cambridge studies in modern optics 13, Cambridge University Press, Cambridge

    Google Scholar 

  45. Bruel M (1998) The history, physics, and applications of the Smart-Cut® process. Mat Res Soc Bull 23: 35–39

    Google Scholar 

  46. Radojevic AM, Levy M, Osgood JRM (2000) Zeroth-order half-wave plates of LiNbO3 for integrated optics applications. IEEE Photon Technol Lett 12: 1653–1655

    Article  ADS  Google Scholar 

  47. Gotz G, Karge H (1983) Ion implantation in LiNbO3. Nucl Instr Meth Phys Res 209: 1079–1088

    Article  Google Scholar 

  48. Barry IE, Ross GW, Smith PGR, Eason RW (1998) Microstructuring of LiNbO3 using differential etch-rate between inverted and non-inverted ferroelectric domains. Mater Lett 37: 246–248

    Article  Google Scholar 

  49. Barry IE, Ross GW, Smith PGR, Eason RW (1999) Ridge waveguides in LiNbO3 fabricated by differential etching following spatially selective domain inversion. Appl Phys Lett 74: 1487–1489

    Article  ADS  Google Scholar 

  50. Yablonovitch E, Gmitter T, Harbison JP, Bhat R (1987) Extreme selectivity in the liftoff of epitaxial GaAs films. Appl Phys Lett 51: 2222–2224

    Article  ADS  Google Scholar 

  51. Ramadan TA, Levy M, Osgood JRM (2000) Electro-optic modulation in thin epitaixal lift off films of Z-cut LiNbO3. Appl Phys Lett 25: 1407–1409

    Article  ADS  Google Scholar 

  52. Radojevic AM, Levy M, Kwak H, Osgood JRM (1999) Strong nonlinear response in 10— µm-thick films of epitaxial lift-off films of LiNbO3. Appl Phys Lett 75: 2888–2890

    Article  ADS  Google Scholar 

  53. Weldon MK, Collot M, Chabal YJ, Venezia VC, Agarwal A, Haynes TE, Eaglesham DJ, Christman SB, Chaban EE (1998) Mechanism of silicon exfoliation induced by hydrogen/helium co-implantation. Appl Phys Lett 73: 3721–3723

    Article  ADS  Google Scholar 

  54. Jackel J, Rice CE, Veselka JJ (1982) Proton-exchange for high-index waveguides in LiNbO3. Appl Phys Lett 47: 607–608

    Article  ADS  Google Scholar 

  55. Bortz ML, Fejer MM (1991) Annealed proton-exchanged LiNbO3 waveguides. Optics Lett 16: 1844–1846

    Article  ADS  Google Scholar 

  56. Radojevic AM, Osgood JRM, Roy NA, Bakhru H (2002) Pre-patterned optical circuits in single-crystal thin-films of LiNbO3. IEEE Photon Tech Lett 14: 322–325

    Article  ADS  Google Scholar 

  57. Izuhara T Radojevic AM (2001), unpublished work

    Google Scholar 

  58. Albaugh KB, Rasmussen DH (1992) Rate processes during anodic bonding. J Am Ceram Soc 75: 2644–2648

    Article  Google Scholar 

  59. Fujita J, Gerhardt R, Eldada LA (2002) Hybrid integrated optical isolators and circulators. In: Opto-electronic interconnects, integrated circuits, and packaging. SPIE Proc 4652: 4652–08

    Google Scholar 

  60. Radojevic AM, Fujita J, Eldada LA (2002) Hybrid integrated polarization mode converters and low voltage electro-optic modulators using crystal-ion sliced LiNbO3 films. In: Optoelectronic interconnects, integrated circuits, and packaging. SPIE Proc 4652: 4652–03

    Google Scholar 

  61. Batterman BW (1964) Dynamical diffraction of X rays by perfect crystals. Rev Modern Phys 36: 681–717

    Article  MathSciNet  ADS  Google Scholar 

  62. Suchoski PG, Findakly TK, Leonberger FJ (1988) Stable low-loss proton-exchanged LiNbO3 waveguide devices with no electro-optic degradation. Optics Lett 13: 10501052

    Google Scholar 

  63. Ulrich R, Torge R (1973) Measurement of thin film parameters with a prism coupler. Appl Opt 12: 2901–2908

    Article  ADS  Google Scholar 

  64. Radojevic AM, Levy M, Osgood Jr, Kumar A, Bakhru H (2000) Zero-order half-wave plates of lithium niobate for integrated optics applications in the 155— gm waveband in Trends in optics and photonics. Int Photon Res 45: 271–273

    Google Scholar 

  65. Nishihara H, Harn M, Suhara T (1998) Optical integrated circuits. McGraw-Hill, New York

    Google Scholar 

  66. Radojevic AM, Levy M, Osgood JrRM, Jundt DH, Kumar A, Bakhru H (2000), Second-order optical nonlinearity of 10— gm-thick periodically poled LiNbO3 films. Optics Lett 25: 1034–1036

    Article  ADS  Google Scholar 

  67. Fejer MM, Magel GA, Jundt DH, Byer RL (1992) Quasi-phase-matched second harmonic generation: tuning and tolerances. IEEE J Quantum Electron 28: 2631–2654

    Article  ADS  Google Scholar 

  68. Lenz G, Tamura K, Haus HA, Ippen EP (1995) All solid-state femtosecond source at 1551.1m. Optics Lett 20: 1289–1291

    Article  ADS  Google Scholar 

  69. Robertson EE, Eason RW, Yokoo Y, Chandler PJ (1997) Photorefractive damage removal in annealed-proton-exchanged LiNbO3 channel waveguides. Appl Phys Lett 70: 2094–2096

    Article  ADS  Google Scholar 

  70. Inoue Y, Ohmori Y, Kawachi M, Ando S, Sawada T, Takahashi H (1994) Polarization mode converter with polyamide half-wave plate in silica-based planar lightwave circuits. IEEE Photon Technol Lett 6: 626–628

    Article  ADS  Google Scholar 

  71. Blackburn H, Wright HC (1970) Thermal analysis of pyroelectric detectors. Infrared Phys 10: 191–193

    Article  ADS  Google Scholar 

  72. Lehman JH, Radojevic AM, Osgood JrRM, Levy M, Pannell CN (2000) Fabrication and evaluation of a freestanding pyroelectric detector made from single-crystal LiNbO3 film. Optics Lett 25: 1657–1659

    Article  ADS  Google Scholar 

  73. Lehman JH, Radojevic AM, Osgood JrRM (2001) Domain-engineered thin-film LiNbO3 pyroelectric-bicell optical detector. IEEE Photon Tech Lett 13: 851–853

    Article  ADS  Google Scholar 

  74. Phelan RJ, Cook AR (1973) Electrically calibrated pyroelectric optical-radiation detector. Appl Opt 12: 2494–2500

    Article  ADS  Google Scholar 

  75. Lehman JH, Aust JA (1988) Bicell pyroelectric optical detector made from a single LiNbO3 domain-reversed electret. Appl Opt 37: 4210–4212

    Article  ADS  Google Scholar 

  76. Meyers LE, Eckardt RC, Fejer MM, Byer RL, Bosenberg WR, Pierce JW (1995) Quasiphase-matched optical parametric oscillators in bulk periodically poled LiNbO3. J Opt Soc Am B 12: 2102–2116

    Article  ADS  Google Scholar 

  77. Lehman JH, Eppledauer G, Aust JA, Ratz M (1999) Domain-engineered pyroelectric radiometer. Appl Opt 38: 7047–7055

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Levy, M., Radojevic, A.M. (2004). Single-Crystal Lithium Niobate Films by Crystal Ion Slicing. In: Alexe, M., Gösele, U. (eds) Wafer Bonding. Springer Series in MATERIALS SCIENCE, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10827-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10827-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05915-5

  • Online ISBN: 978-3-662-10827-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics