Skip to main content

Regulation of heart creatine kinase

  • Conference paper
Cardiac Energetics

Summary

Magnetization transfer nuclear magnetic resonance (NMR) provides measurement of the velocity of the creatine kinase reaction in the intact heart. Standard one-pulse NMR spectroscopy coupled with conventional biochemical analyses provides information about the average cytosolic concentrations of ATP, creatine phosphate (CrP), creatine (Cr) and H+ in the heart. By combining these techniques, we tested the hypothesis that the velocity of the creatine kinase reaction in vivo was regulated by changes in cytosolic concentrations of its substrates. We found that the reaction velocity cannot always be predicted from its metabolite levels. We interpreted these observations as support for the hypothesis that flux through the creatine kinase reaction is regulated by metabolite levels in micro-compartments formed by localization of creatine kinase isozymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bittl JA, Ingwall JS (1985) Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart. J Biol Chem 260: 3512–3517

    PubMed  CAS  Google Scholar 

  2. Bittl JA, Ingwall JS (1986) The energetics of myocardial stretch: creatine kinase flux and oxygen consumption in the noncontracting rat heart. Circ Res 58: 378–383

    Article  PubMed  CAS  Google Scholar 

  3. Cain DF, Davies RE (1962) Breakdown of adenosine triphosphate during a single contraction of working muscle. Biochem Biophys Res Commun 8: 361–366

    Article  PubMed  CAS  Google Scholar 

  4. Forsen S, Hoffman RA (1963) Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J Chem Phys 39: 2892–2901

    Article  CAS  Google Scholar 

  5. Ingwall JS (1982) P-31 NMR spectroscopy of cardiac and skeletal muscles. Am J Physiol 242: H729 — H744

    PubMed  CAS  Google Scholar 

  6. Jacobus WE, Lehninger AL (1973) Creatine kinase of rat heart mitochondria. J Biol Chem 248: 4803–4810

    PubMed  CAS  Google Scholar 

  7. Jacobus WE, Ingwall JS (eds) (1980) Heart creatine kinase. Williams and Wilkins, Baltimore

    Google Scholar 

  8. Jacobus WE (1985) Theoretical support for the heart phosphocreatine energy transport shuttle based on the intracellular diffusion limited mobility of ADP. Biochem Biophys Res Commun 133: 1035–1041

    Article  PubMed  CAS  Google Scholar 

  9. Kammermeier H (1973) Microassay of free and total creatine from tissue extracts by combination of chromatographic and fluorometric methods. Anal Biochem 56: 341–345

    Article  PubMed  CAS  Google Scholar 

  10. Lohmann K (1934) Über die enzymatische Aufspaltung der kreatinen Phosphorsäure; zugleich ein Beitrag zum Chemismus der Muskelkontraktion. Biochem Z 271: 264

    CAS  Google Scholar 

  11. Neely JR, Liebermeister H, Battersby EJ, Morgan HE (1967) Effect of pressure development on oxygen consumption by isolated rat heart. Am J Physiol 212: 804–815

    PubMed  CAS  Google Scholar 

  12. Pool PE, Covell JW, Chidsey CA, Braunwald E (1966) Myocardial high energy phosphate stores in acutely induced hypoxic heart failure. Circ Res 19: 221–229

    Article  PubMed  CAS  Google Scholar 

  13. Saks VA, Kupriyanov Vv, Elizarova GV, Jacobus WE (1980) The importance of creatine kinase localization for the coupling of mitochondrial phosphorylcreatine production to oxidative phosphorylation. J Biol Chem 255: 755–763

    PubMed  CAS  Google Scholar 

  14. Saks VA, Ventura-Clapier R, Huchua ZA, Preobrazhensky AN, Emelin IV (1984) Creatine kinase in regulation of heart function and metabolism. I. Further evidence for compartmentation of adenie nucleotides in cardiac myofibrillar and sarcolemmal coupled ATPase-creatine kinase systems. Biochim Biophys Acta 803: 254–264

    Google Scholar 

  15. Scholte HR (1973) Triple localization of creatine kinase in heart and skeletal muscle cells of the rat: evidence for existence of myofibrillar and mitochondrial isoenzymes. Biochem Biophys Acta 305: 413–427

    Article  PubMed  CAS  Google Scholar 

  16. Turner DC, Wallimann T, Eppenberger EM (1973) A protein that binds specifically to the M-line of skeletal muscle is identified as the muscle form of creatine kinase. Proc Natl Acad Sci USA 70: 702–705

    Article  PubMed  CAS  Google Scholar 

  17. Veech RK, Lawson JWR, Cornell NW, Krebs HA (1979) Cytosolic phosphorylation potential. J Biol Chem 254: 6538–6543

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

R. Jacob Hj. Just Ch. Holubarsch

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ingwall, J.S., Bittl, J.A. (1987). Regulation of heart creatine kinase. In: Jacob, R., Just, H., Holubarsch, C. (eds) Cardiac Energetics. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-11289-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-11289-2_9

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-662-11291-5

  • Online ISBN: 978-3-662-11289-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics