Skip to main content

Functional Roles of Glycosphingolipids and Sphingolipids in Signal Transduction

  • Chapter
Sphingolipid-Mediated Signal Transduction

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

The role of GSLs in the control of cell growth was initially suggested by dramatic changes of GSL composition observed in polyoma virus-transformed cells,1 transformed vs. nontransformed cells with temperature-sensitive mutants of Rous sarcoma virus,2 and transformed cells transfected with Ras-K oncogene.3 Figure 10.1 summarizes the dramatic reduction of GM3 and associated increase of LacCer, GlcCer, and/or Cer in transformed cells in these early studies. These observations are consistent with today’s views on roles of these GSLs and SLs in control of signal transduction (see Fig. 1 legend). Subsequent studies on roles of GSLs in control of cell proliferation and signal transduction (as understood today) were based on: (a)exogenous addition of GSLs to transformed cells, which partially restored normal cell growth and extended the G1 phase of cell cycle;4 (b)use of anti-GM3 Fab antibodies which arrested cell growth at the G1 phase5 and induced normal cell growth pheno-type6 (c)a close correlation between “cell contact response” of GSL synthesis and “contact inhibition” of cell growth.7,8 Phenomenon (c) (illustrated in Fig. 10.2) is relevant to the current hypothesis that GM3- or Gb3-dependent signal transduction is altered in association with cell contact and contact inhibition, and that these signaling mechanisms are lost in transformed cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hakomori S, Murakami WT. Glycolipids of hamster fibroblasts and derived malignant-transformed cell lines. Proc Natl Acad Sci USA 1968; 59: 254–261.

    Article  PubMed  CAS  Google Scholar 

  2. Hakomori S, Wyke JA, Vogt PK. Glycolipids of chick embryo fibroblasts infected with temperature-sensitive mutants of avian sarcoma viruses. Virology 1977; 76: 485–493.

    Article  PubMed  CAS  Google Scholar 

  3. Tsuchiya S, Hakomori S. Cell surface glycolipids of transformed NIH 3T3 cells transfected with DNAs of human bladder and lung carcinomas. EMBO J 1983; 2: 2323–2326.

    PubMed  CAS  Google Scholar 

  4. Laine RA, Hakomori S. Incorporation of exogenous glycosphingolipids in plasma membranes of cultured hamster cells and concurrent change of growth behavior. Biochem Biophys Res Commun 1973; 54: 1039–1045.

    Article  PubMed  CAS  Google Scholar 

  5. Lingwood CA, Hakomori S. Selective inhibition of cell growth and associated changes in glycolipid metabolism induced by monovalent antibodies to glycolipids. Exp Cell Res 1977; 108: 385–391.

    Article  PubMed  CAS  Google Scholar 

  6. Lingwood CA, Ng A, Hakomori S. Monovalent antibodies directed to transformation-sensitive membrane components inhibit the process of viral transformation. Proc Natl Acad Sci USA 1978; 75: 6049–6053.

    Article  PubMed  CAS  Google Scholar 

  7. Hakomori S. Cell density-dependent changes in glycolipid concentrations in fibroblasts, and loss of this response in virus-transformed cells. Proc Natl Acad Sci USA 1970; 67: 1741–1747.

    Article  PubMed  CAS  Google Scholar 

  8. Sakiyama H, Gross SK, Robbins PW. Glycolipid synthesis in normal and virus-transformed hamster cell lines. Proc Natl Acad Sci USA 1972; 69: 872–876.

    Article  PubMed  CAS  Google Scholar 

  9. Bremer EG, Hakomori S. GM3 ganglio-side induces hamster fibroblast growth inhibition in chemically-defined medium: Ganglioside may regulate growth factor receptor function. Biochem Biophys Res Commun 1982; 106: 711–718.

    Article  PubMed  CAS  Google Scholar 

  10. Bremer EG, Hakomori S, Bowen-Pope DF, Raines EW, Ross R. Ganglioside-mediated modulation of cell growth, growth factor binding, and receptor phosphorylation. J Biol Chem 1984; 259: 6818–6825.

    PubMed  CAS  Google Scholar 

  11. Bremer EG, Schlessinger J, Hakomori S. Ganglioside-mediated modulation of cell growth: specific effects of GM3 on ty-rosine phosphorylation of the epidermal growth factor receptor. J Biol Chem 1986; 261: 2434–2440.

    PubMed  CAS  Google Scholar 

  12. Hanai N, Nores GA, Torres-Mendez C-R, Hakomori S. Modified ganglioside as a possible modulator of transmembrane signaling mechanism through growth factor receptors: a preliminary note. Biochem Biophys Res Commun 1987; 147: 127–134.

    Article  PubMed  CAS  Google Scholar 

  13. Hanai N, Dohi T, Nores GA, Hakomori S. A novel ganglioside, de-N-acetyl-GM3 (II3NeuNH2LacCer), acting as a strong promoter for epidermal growth factor receptor kinase and as a stimulator for cell growth. J Biol Chem 1988; 263: 6296–6301.

    PubMed  CAS  Google Scholar 

  14. Hanai N, Nores GA, MacLeod C, Torres- Mendez C-R, Hakomori S. Ganglioside-mediated modulation of cell growth: specific effects of GM3 and lyso-GM3 in tyrosine phosphorylation of the epidermal growth factor receptor. J Biol Chem 1988; 263: 10915–10921.

    PubMed  CAS  Google Scholar 

  15. Hannun YA, Loomis CR, Merrill AH Jr, Bell RM. Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets. J Biol Chem 1986; 261: 12604–12609.

    PubMed  CAS  Google Scholar 

  16. Hannun YA, Bell RM. Lysosphingolipids inhibit protein kinase C: implications for the sphingolipidoses. Science 1987; 235: 670–674.

    Article  PubMed  CAS  Google Scholar 

  17. Hannun YA, Bell RM. Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science 1989; 243: 500–507.

    Article  PubMed  CAS  Google Scholar 

  18. Igarashi Y, Hakomori S, Toyokuni T et al. Effect of chemically well-defined sphingosine and its N-methyl derivatives on protein kinase C and src kinase activities. Biochemistry 1989; 28: 6796–6800.

    Article  PubMed  CAS  Google Scholar 

  19. Igarashi Y, Hakomori S. Enzymatic synthesis of N,N-dimethyl-sphingosine: demonstration of the sphingosine:N- methyltransferase in mouse brain. Biochem Biophys Res Commun 1989; 164: 1411–1416.

    Article  PubMed  CAS  Google Scholar 

  20. Oishi K, Zheng B, Kuo JF. Inhibition of Na,K-ATPase and sodium pump by protein kinase C regulators sphingosine, lysophosphatidylcholine, and oleic acid. I Biol Chem 1990; 265: 70–75.

    CAS  Google Scholar 

  21. Merrill AH Jr, Hannun YA, Bell RM. Introduction: sphingolipids and their metabolites in cell regulation. In: Bell RM, Hannun YA, Merrill AH Jr, eds. Sphingolipids: Part A: Functions and Breakdown Products (Adv Lipid Research, Vol 25 ). San Diego, CA: Academic Press, 1993: 1–24.

    Google Scholar 

  22. Zhang H, Desai NN, Murphey JM, Spiegel S. Increases in phophatidic acid levels accompany sphingosine-stimulated proliferation of quiescent Swiss 3T3 cells. J Biol Chem 1990; 265: 21309–21316.

    PubMed  CAS  Google Scholar 

  23. Zhang H, Desai NN, Olivera A, Seki T, Brooker G, Spiegel S. Sphingosine-1- phosphate, a novel lipid, involved in cellular proliferation. J Cell Biol 1991; 114: 155–167.

    Article  PubMed  CAS  Google Scholar 

  24. Ghosh TK, Bian J, Gill DL. Intracellular calcium release mediated by sphingosine derivatives generated in cells. Science 1990; 248: 1653–1656.

    Article  PubMed  CAS  Google Scholar 

  25. Spiegel S, Olivera A, Carlson RO. The role of sphingosine in cell growth regulation and transmembrane signaling. In: Bell RM, Hannun YA, Merrill AH Jr, eds. Sphingolipids: Part A: Functions and breakdown products (Adv Lipid Research, Vol 25 ). San Diego, CA: Academic Press, 1993: 105–129.

    Google Scholar 

  26. Okazaki T, Bell RM, Hannun YA. Sphingomyelin turnover induced by vitamin D3 in HL-60 cells: role in cell differentiation. J Biol Chem 1989; 264: 19076–19080.

    PubMed  CAS  Google Scholar 

  27. Hannun YA, Linardic CM. Sphingolipid breakdown products: anti-proliferative and tumor-suppressor lipids. Biochim Biophys Acta 1993; 1154: 223–236.

    Article  PubMed  CAS  Google Scholar 

  28. Kolesnick RN, Golde DW. The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 1994; 77: 325–328.

    Article  PubMed  CAS  Google Scholar 

  29. Spiegel S, Foster D, Kolesnick RN. Signal transduction through lipid second messengers. Curr Opin Cell Biol 1996; 8: 159–167.

    Article  PubMed  CAS  Google Scholar 

  30. Igarashi Y, Kitamura K, Zhou Q, Hakomori S. A role of lyso-phosphatidyl-choline in GM3-dependent inhibition of epidermal growth factor receptor auto-phosphorylation in A431 plasma membranes. Biochem Biophys Res Commun 1990; 172: 77–84.

    Article  PubMed  CAS  Google Scholar 

  31. Ueki K, Matsuda S, Tobe K et al. Feedback regulation of mitogen-activated protein kinase kinase kinase activity of c-Raf-1 by insulin and phorbol ester stimulation. J Biol Chem 1994; 269: 15756–15761.

    PubMed  CAS  Google Scholar 

  32. Kolch W, Heidecker G, Kochs G et al. Protein kinase Ca activates RAF-1 by direct phosphorylation. Nature 1993; 364: 249–252.

    Article  PubMed  CAS  Google Scholar 

  33. Wu J, Dent P, Jelinek T, Wolfman A, Weber MJ, Sturgill TW. Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3’,5’-monophos-phate. Science 1993; 262: 1065–1068.

    Article  PubMed  CAS  Google Scholar 

  34. Graves LM, Bornfeldt KE, Raines EW et al. Protein kinase A antagonizes platelet-derived growth factor-induced signaling by mitogen-activated protein kinase in human arterial smooth muscle cells. Proc Natl Acad Sci USA 1993; 90: 10300–10304.

    Article  PubMed  CAS  Google Scholar 

  35. Caputto RI, Maccioni AHR, Caputto BL. Activation of deoxycholate solubilized adenosine triphosphatase by ganglioside and asialoganglioside preparations. Biochem Biophys Res Commun 1977; 74: 1046–1052.

    Article  PubMed  CAS  Google Scholar 

  36. Spiegel S, Handler JS, Fishman PH. Gan-gliosides modulate sodium transport in cultured toad kidney epithelia. J Biol Chem 1986; 261: 15755–15760.

    PubMed  CAS  Google Scholar 

  37. Goldenring JR, Otis LC, Yu RK, DeLorenzo RJ. Calcium/ganglioside-de-pendent protein kinase activity in rat brain membrane. J Neurochem 1985; 44: 1229–1234.

    Article  PubMed  CAS  Google Scholar 

  38. Chan K-FJ. Ganglioside-modulated protein phosphorylation: partial purification and characterization of a ganglioside-in-hibited protein kinase in brain. J Biol Chem 1988; 263: 568–574.

    PubMed  CAS  Google Scholar 

  39. Partington CR, Daly JW. Effect of gan-gliosides on adenylate cyclase activity in rat cerebral cortical membranes. Mol Pharmacol 1979; 15: 484–491.

    PubMed  CAS  Google Scholar 

  40. Yajima M, Hosoda K, Kanbayashi Y, Nakamura T, Takahashi I, Ui M. Biological properties of islets-activating protein (IAP) purified from the culture medium of Bordetella pertussis. J Biochem (Tokyo) 1978; 83: 305–312.

    CAS  Google Scholar 

  41. Hoshino S, Kikkawa S, Takahashi K et al. Identification of sites for alkylation by N-ethylmaleimide and pertussis toxin-catalyzed ADP-ribosylation on GTP- binding proteins. FEBS Lett 1990; 276: 227–231.

    Article  PubMed  CAS  Google Scholar 

  42. Aktories K, Mohr C, Koch G. Clostridium botulinum C3 ADP-ribosyltransferase. Curr Top Microbiol Immunol 1992; 175: 115–131.

    Article  PubMed  CAS  Google Scholar 

  43. Hara-Yokoyama M, Hirabayashi Y, Irie F et al. Identification of gangliosides as inhibitors of ADP-ribosyltransferases of pertussis toxin and exoenzyme C3 from Clostridium botulinum. J Biol Chem 1995; 270: 8115–8121.

    Article  PubMed  CAS  Google Scholar 

  44. Goodemote KA, Mattie ME, Berger A, Spiegel S. Involvement of a pertussis toxin-sensitive G protein in the mitoge-nic signaling pathways of sphingosine 1-phosphate. J Biol Chem 1995; 270: 10272–10277.

    Article  PubMed  CAS  Google Scholar 

  45. Aitken A, Howell S, Jones D, Madrazo J, Patel Y. 14–3–3 a and 5 are the phospho–rylated forms of Raf–activating 14–3–3 ß and In vivo stoichiometric phosphorylation in brain at a Ser–Pro–Glu–Lys motif. J Biol Chem 1995; 270: 5706–5709.

    Article  PubMed  CAS  Google Scholar 

  46. Morrison D. 14–3–3: modulators of signaling proteins? Science 1994; 266:56–57.

    Google Scholar 

  47. Aitken A. 14–3–3 proteins on the MAP. Trends Biochem Sci (TIBS) 1995; 20: 95–97.

    Article  CAS  Google Scholar 

  48. Freed E, Symons M, MacDonald SG, McCormick F, Ruggieri R. Binding of 14–3–3 proteins to the protein kinase Raf and effects on its activation. Science 1994; 265: 1713–1716.

    Article  PubMed  CAS  Google Scholar 

  49. Fu H, Xia K, Pallas DC et al. Interaction of the protein kinase Raf–1 with 14–3–3 proteins. Science 1994; 266: 126–129.

    Article  PubMed  CAS  Google Scholar 

  50. Megidish T, White T, Takio K, Titani K, Igarashi Y, Hakomori S. The signal modulator protein 14–3–3 is a target of sphingosine–or N,N–dimethylsphingo–sine–dependent kinase in 3T3(A31) cells. Biochem Biophys Res Commun 1995; 216: 739–747.

    Article  PubMed  CAS  Google Scholar 

  51. Higashi H, Omori A, Yamagata T. Calmodulin, a ganglioside-binding protein: Binding of gangliosides to calmodulin in the presence of calcium. J Biol Chem 1992; 267: 9831–9838.

    PubMed  CAS  Google Scholar 

  52. Higashi H, Yamagata T. Mechanism for ganglioside-mediated modulation of a calmodulin-dependent enzyme: modulation of calmodulin-dependent cyclic nucleotide phosphodiesterase activity through binding of gangliosides to calmodulin and the enzyme. J Biol Chem 1992; 267: 9839–9843.

    PubMed  CAS  Google Scholar 

  53. Dyer CA, Benjamins JA. Glycolipids and transmembrane signaling: antibodies to galactocerebroside cause an influx of calcium in oligodendrocytes. J Cell Biol 1990; 111: 625–633.

    Article  PubMed  CAS  Google Scholar 

  54. Yatomi Y, Igarashi Y, Hakomori S. Effects of exogenous gangliosides on intracellular Ca2+ mobilization and functional responses in human platelets. Glyco-biology 1996; 6: 347–353.

    Article  CAS  Google Scholar 

  55. Weis FMB, Davis RJ. Regulation of epidermal growth factor receptor signal transduction: Role of gangliosides. J Biol Chem 1990; 265: 12059–12066.

    PubMed  CAS  Google Scholar 

  56. Tsuruoka T, Tsuji T, Nojiri H, Holmes EH, Hakomori S. Selection of a mutant cell line based on differential expression of glycosphingolipid, utilizing anti-lacto-sylceramide antibody and complement. J Biol Chem 1993; 268: 2211–2216.

    PubMed  CAS  Google Scholar 

  57. Nojiri H, Stroud MR, Hakomori S. A specific type of ganglioside as a modulator of insulin-dependent cell growth and insulin receptor tyrosine kinase activity: possible association of ganglioside-in-duced inhibition of insulin receptor function and monocytic differentiation induction in HL60 cells. J Biol Chem 1991; 266: 4531–4537.

    PubMed  CAS  Google Scholar 

  58. Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell 1990; 61: 203–212.

    Article  PubMed  CAS  Google Scholar 

  59. Zhou Q, Hakomori S, Kitamura K, Igarashi Y. GM3 directly inhibits tyrosine phosphorylation and de-AT-acetyl-GM3 directly enhances serine phosphorylation of epidermal growth factor receptor, independently of receptor-receptor interaction. J Biol Chem 1994; 269: 1959–1965.

    PubMed  CAS  Google Scholar 

  60. Sjoberg ER, Chammas R, Ozawa H et al. Expression of de-N-acetyl-gangliosides in human melanoma cells is induced by genistein or nocodazole. J Biol Chem 1995; 270: 2921–2930.

    Article  PubMed  CAS  Google Scholar 

  61. Barnes D, Sato G. Methods for growth of cultured cells in serum-free medium. Anal Biochem 1980; 102: 255–270.

    Article  PubMed  CAS  Google Scholar 

  62. Nudelman ED, Levery SB, Igarashi Y, Hakomori S. Plasmalopsychosine, a novel plasmal (fatty aldehyde) conjugate of psychosine with cyclic acetal linkage: isolation and characterization from human brain white matter. J Biol Chem 1992; 267: 11007–11016.

    PubMed  CAS  Google Scholar 

  63. Sakakura C, Igarashi Y, Anand JK, Sadozai KK, Hakomori S. Plasmalopsychosine of human brain mimics the effect of nerve growth factor by activating its receptor kinase and mi-togen-activated protein kinase in PC 12 cells: Induction of neurite outgrowth and prevention of apoptosis. J Biol Chem 1996; 271: 946–952.

    Article  PubMed  CAS  Google Scholar 

  64. Ferrari G, Anderson BL, Stephens RM, Kaplan DR, Greene LA. Prevention of apoptotic neuronal death by Gmi ganglioside: involvement of Trk neurotrophin receptors. J Biol Chem 1995; 270: 3074–3080.

    Article  PubMed  CAS  Google Scholar 

  65. Mutoh T, Tokuda A, Miyada T, Hamaguchi M, Fujiki N. Ganglioside GMI binds to the Trk protein and regulates receptor function. Proc Natl Acad Sci USA 1995; 92: 5087–5091.

    Article  PubMed  CAS  Google Scholar 

  66. Olivera A, Spiegel S. Sphingosine-1 -phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 1993; 365: 557–560.

    Article  PubMed  CAS  Google Scholar 

  67. Sadahira Y, Ruan F, Hakomori S, Igarashi Y. Sphingosine 1-phosphate, a specific endogenous signaling molecule controlling cell motility and tumor cell invasiveness. Proc Natl Acad Sci USA 1992; 89: 9686–9690.

    Article  PubMed  CAS  Google Scholar 

  68. Ross R. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 1993; 362: 801–809.

    Article  PubMed  CAS  Google Scholar 

  69. Bornfeldt KE, Graves LM, Raines EW et al. Sphingosine-l-phosphate inhibits PDGF-induced chemotaxis of human arterial smooth muscle cells: spatial and temporal modulation of PDGF chemo-tactic signal transduction. J Cell Biol 1995; 130: 193–206.

    Article  PubMed  CAS  Google Scholar 

  70. Yamamura S, Sadahira Y, Ruan F, Hakomori S, Igarashi Y. Sphingosine-l-phosphate inhibits actin nucleation and pseudopodium formation to control cell motility of mouse melanoma cells. FEBS Lett 1996; 382: 193–197.

    Article  PubMed  CAS  Google Scholar 

  71. Machesky LM, Hall A. Rho: a connection between membrane receptor signalling and the cytoskeleton. Trends Cell Biol 1996; 6: 304–310.

    Article  PubMed  CAS  Google Scholar 

  72. Postma FR, Jalink K, Hengeveld T, Moolenaar WH. Sphingosine-l-phosphate rapidly induces Rho-dependent neurite retraction: action through a specific cell surface receptor. EMBO J 1996; 15: 2388–2395.

    PubMed  CAS  Google Scholar 

  73. Faucher MF, Girones N, Hannun YA, Bell RM, Davis RJ. Regulation of the epidermal growth factor receptor phosphorylation state by srphingosine in A431 human epidermoid carcinoma cells. J Biol Chem 1988; 263: 5319–5327.

    PubMed  CAS  Google Scholar 

  74. Pushkareva MY, Khan WA, Alessenko AV, Sahyoun N, Hannun YA. Sphingosine activation of protein kinases in Jurkat T cells: in vitro phosphorylation of endogenous protein substrates and specificity of action. J Biol Chem 1992; 267: 15246–15251.

    PubMed  CAS  Google Scholar 

  75. Seufferlein T, Rozengurt E. Sphingosine induces pl25FAK and paxillin tyrosine phosphorylation, actin stress fiber formation, and focal contact assembly in Swiss 3T3 cells. J Biol Chem 1994; 269: 27610–27617.

    PubMed  CAS  Google Scholar 

  76. Igarashi Y, Kitamura K, Toyokuni T et al. A specific enhancing effect of N,N-di-methylsphingosine on epidermal growth factor receptor autophosphorylation: demonstration of its endogenous occurrence (and the virtual absence of un-substituted sphingosine) in human epidermoid carcinoma A431 cells. J Biol Chem 1990; 265: 5385–5389.

    PubMed  CAS  Google Scholar 

  77. DeVouge MW, Yamazaki A, Bennett SA et al. Immunoselection of GRP94/endo-plasmin from a KNRK cell-specific lambda gtll library using antibodies directed against a putative heparanase amino-ter-minal peptide. Int J Cancer 1994; 56: 286–294.

    Article  CAS  Google Scholar 

  78. Endo K, Igarashi Y, Nisar M, Zhou Q, Hakomori S. Cell membrane signaling as target in cancer therapy: Inhibitory effect of N,N- dimethyl and N,N,N- trim ethyl sphingosine derivatives on in vitro and in vivo growth of human tumor cells in nude mice. Cancer Res 1991; 51: 1613–1618.

    PubMed  CAS  Google Scholar 

  79. Okoshi H, Hakomori S, Nisar M et al. Cell membrane signaling as target in cancer therapy II: inhibitory effect of N,N,N- trimethylsphingosine on metastatic potential of murine B16 melanoma cell line through blocking of tumor cell-dependent platelet aggregation. Cancer Res 1991; 51: 6019–6024.

    PubMed  CAS  Google Scholar 

  80. Sweeney EA, Sakakura C, Shirahama T et al. Sphingosine and its methylated derivative N,N-dimethylsphingosine (DMS) induce apoptosis in a variety of human cancer cell lines. Int J Cancer 1996; 66: 358–366.

    Article  PubMed  CAS  Google Scholar 

  81. Handa K, Igarashi Y, Nisar M, Hakomori S. Downregulation of GMP-140 (CD62 or PADGEM) expression on platelets by N,N-dimethyl and N,N,N-trimethyl derivatives of sphingosine. Biochemistry 1991; 30: 11682–11686.

    Article  PubMed  CAS  Google Scholar 

  82. Murohara T, Buerke M, Margiotta J et al. Myocardial and endothelial protection by TMS in ischemia-reperfusion injury. Am J Physiol (Heart Circ Physiol) 1995; 269: H504–H514.

    CAS  Google Scholar 

  83. Scalia R, Murohara T, Delyani JA, Nossuli TO, Lefer AM. Myocardial protection by N,N,N-trimethylsphingosine in ischemia reperfusion injury is mediated by inhibition of P-selectin. J Leukocyte Biol 1996; 59: 317–324.

    PubMed  CAS  Google Scholar 

  84. Park YS, Ruan F, Hakomori S, Igarashi Y. Cooperative inhibitory effect of N,N,N-trimethylsphingosine and sphingosine-l-phosphate, co-incorporated in liposomes, on B16 melanoma cell metastasis: Cell membrane signaling as a target in cancer therapy IV. Int J Oncol 1995; 7: 487–494.

    PubMed  CAS  Google Scholar 

  85. Mangeney M, Rousselet G, Taga S, Tursz T, Wiels J. The fate of human CD77+ germinal center B lymphocytes after rescue from apoptosis. Mol Immunol 1995; 32: 333–339.

    Article  PubMed  CAS  Google Scholar 

  86. Maloney MD, Lingwood CA. CD 19 has a potential CD77 (globotriaosyl ceramide)-binding site with sequence similarity to verotoxin B-subunits: implications of molecular mimicry for B cell adhesion and enterohemorrhagic Escherichia coli pathogenesis. J Exp Med 1994; 180: 191–201.

    Article  PubMed  CAS  Google Scholar 

  87. Farkas-Himsley H, Hill R, Rosen B, Arab S, Lingwood CA. The bacterial colicin active against tumor cells in vitro and in vivo is verotoxin 1. Proc Natl Acad Sci USA 1995; 92: 6996–7000.

    Article  PubMed  CAS  Google Scholar 

  88. Hiraishi K, Suzuki K, Hakomori S, Adachi M. Ley antigen expression is correlated with apoptosis (programmed cell death). Glycobiology 1993; 3: 381–390.

    Article  PubMed  CAS  Google Scholar 

  89. Obeid LM, Linardic CM, Karolak LA, Hannun YA. Programmed cell death induced by ceramide. Science 1993; 259: 1769–1771.

    Article  PubMed  CAS  Google Scholar 

  90. Ohta H, Sweeney EA, Masamune A, Yatomi Y, Hakomori S, Igarashi Y. Induction of apoptosis by sphingosine in human leukemic HL-60 cells: a possible endogenous modulator of apoptotic DNA fragmentation occurring during phorbol ester-induced differentiation. Cancer Res 1995; 55: 691–697.

    PubMed  CAS  Google Scholar 

  91. Hakomori S, Young WW Jr, Patt LM, Yoshino T, Halfpap L, Lingwood CA. Structure and function of gangliosides. In: Svennerholm L, Dreyfus H, Urban PF, eds. Cell Biological and Immunological Significance of Ganglioside Changes Associated with Transformation. New York, NY: Plenum Publ. Corp., 1980: 247–261.

    Google Scholar 

  92. Harlan JM, Liu DY, eds. Adhesion: its Role in Inflammatory Disease. New York, NY: W.H. Freeman and Co., 1992.

    Google Scholar 

  93. Hakomori S. Bifunctional role of glyco-sphingolipids: Modulators for transmembrane signaling and mediators for cellular interactions. J Biol Chem 1990; 265: 18713–18716.

    PubMed  CAS  Google Scholar 

  94. Bremer EG, Hakomori S. Cell growth regulation through glycosphingolipids: GM3 ganglioside may regulate fibroblast growth factor reception. In: Galeotti T, Cittadini A, Neri G, Papa S, eds. Membranes in Tumor Growth. Amsterdam: Elsevier Biomedical Press, 1982: 419–429.

    Google Scholar 

  95. Kreutter D, Kim JYH, Goldenring JR et al. Regulation of protein kinase C activity by gangliosides. J Biol Chem 1987; 262: 1633–1637.

    PubMed  CAS  Google Scholar 

  96. Marsh NL, Elias PM, Holleran WM. Glucosylceramides stimulate murine epidermal hyperproliferation. J Clin Invest 1995; 95: 2903–2909.

    Article  PubMed  CAS  Google Scholar 

  97. Chatterjee SK. Lactosylceramide stimulates aortic smooth muscle cell proliferation. Biochem Biophys Res Commun 1991; 181: 554–561.

    Article  PubMed  CAS  Google Scholar 

  98. Bhunia AK, Han H, Snowden A, Chatterjee S. Lactosylceramide stimulates Ras-GTP loading, kinases (MEK, Raf), p44 mitogen-activated protein kinase, and c-fos expression in human aortic smooth muscle cells. J Biol Chem 1996; 271: 10660–10666.

    Article  PubMed  CAS  Google Scholar 

  99. Su Y, Rosenthal D, Smulson M, Spiegel S. Sphingosine 1-phosphate, a novel signaling molecule, stimulates DNA binding activity of AP-1 in quiescent Swiss 3T3 fibroblasts. J Biol Chem 1994; 269: 16512–16517.

    PubMed  CAS  Google Scholar 

  100. Wu J, Spiegel S, Sturgill TW. Sphingosine 1-phosphate rapidly activates the mitogen-activated protein kinase pathway by a G protein-dependent mechanism. J Biol Chem 1995; 270: 11484–11488.

    Article  PubMed  CAS  Google Scholar 

  101. Hannun YA. The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem 1994; 269: 3125–3128.

    PubMed  CAS  Google Scholar 

  102. Sun H, Tonks NK. The coordinated action of protein tyrosine phosphatases and kinases in cell signaling. Trends Biochem Sci (TIBS) 1994; 19: 480–485.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hakomori, Si. (1997). Functional Roles of Glycosphingolipids and Sphingolipids in Signal Transduction. In: Sphingolipid-Mediated Signal Transduction. Molecular Biology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22425-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22425-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22427-4

  • Online ISBN: 978-3-662-22425-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics