Skip to main content

Function of Thin Segments of Henle’s Loop

  • Chapter
Nephrology

Abstract

It is well known that the renal medulla plays an important role in the generation of concentrated urine, which is critical in the maintenance of body fluid osmolality. Since the proposal of the operation of countercurrent systems in the renal medulla by Kuhn and his associates [1–3], it has been widely accepted that the loop structures of the nephron in the renal medulla are essential for the generation and maintenance of a steep osmotic gradient along the axis of the renal medulla. However, the detailed mechanisms by which a steep osmotic gradient is generated by the countercurrent multiplication system remain to be established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kuhn W, Ryffel K (1942) Herstellung konzentrierter Lösungen aus verdünnten durch blosse Membranwirkung. ( Ein Modelversuch zur Funktion der Niere ). Hoppe Seylers Z Physiol Chem 276: 145–178

    Google Scholar 

  2. Wirz H, Hargitay B, Kuhn W (1951) Lokalization des Konzentrierungsprozesses in der Niere durch direkte Kryoskopie. Heiv Physiol Pharmacol Acta 9: 196–207

    CAS  Google Scholar 

  3. Kuhn W, Ramel L (1959) Aktiver Salztransport als möglicher (und warscheinlicher) Einzeleffekt bei der Harnkonzentrierung in der Niere. Heiv Chim Acta 42: 628–660

    Article  CAS  Google Scholar 

  4. Jamison RL, Kritz W (1982) Urinary concentrating mechanism. Structure and function. Oxford, New York

    Google Scholar 

  5. Jamison RL, Bennett CM, Berliner RW (1967) Countercurrent multiplication by the thin loops of Henle. Am J Physiol 212: 357–366

    PubMed  CAS  Google Scholar 

  6. Morgan T, Berliner RW (1968) Permeability of loop of Henle, vasa recta, and collecting duct to water, urea and sodium. Am J Physiol 215: 108–115

    PubMed  CAS  Google Scholar 

  7. Burg M, Grantham J, Abramow M, Orloff J (1966) Preparation and study of fragments of single rabbit nephrons. Am J Physiol 210: 1293–1298

    PubMed  CAS  Google Scholar 

  8. Kritz W (1981) Structural organization of the renal medulla: comparative and functional aspects. Am J Physiol 241: R3 - R16

    Google Scholar 

  9. Bankir L, De Rouffignac C (1985) Urinary concentrating ability: insight from comparative anatomy. Am J Physiol 249: R643 - R666

    PubMed  CAS  Google Scholar 

  10. Kaissling B, de Rouffignac C, Barrett JM, Kriz W (1975) The structural organization of the kidney of the desert rodent Psammomys obesus. Acta Embryol 148: 121–143

    Article  CAS  Google Scholar 

  11. Kriz W, Dietrich J, Hoffman S (1968) Aufbau der Gefassbündel im Nierenmark von Wüstenmäusen (abstract). Naturwissenschaften 50: 40

    Article  Google Scholar 

  12. Dietrich HJ, Barrett JM, Kriz W, Bulhoff JP (1975) The ultrastructure of thin loop limbs of the mouse kidney. Anat Embryol (Berl) 147: 1–13

    Article  Google Scholar 

  13. Kriz W, Koepsell H (1974) The structural organization of the mouse kidney. Z Anat Entwicklungsgesch 144: 137–163

    Article  PubMed  CAS  Google Scholar 

  14. Kritz W, Schnermann J, Koepsell H (1972) The position of short and long loops of Henle in the rat kidney. Z. Anat Entwicklungsgesch 138: 301–309

    Article  Google Scholar 

  15. Bachman S, Kriz W (1982) Histotopography and ultrastructure of the thin limbs of the loop of Henle in the hamster. Cell Tiss Res 225: 111–127

    Article  Google Scholar 

  16. Kaissling B, Kritz Z W (1975) Structural organization of the rabbit kidney. Adv Anat Embryol Cell Biol 148: 121–143

    Article  CAS  Google Scholar 

  17. Gottschalk CW, Lassiter WE, Mylle M, Ullrich K, Schmidt-Nielsen B, O’Dell R, Pehling G (1963) Micropuncture study of composition of loop of Henle fluid in desert rodents. Am J Physiol 204: 532–535

    PubMed  CAS  Google Scholar 

  18. Jamison RL (1968) Micropuncture study of segments of thin loops of Henle in the rat. Am J Physiol 215: 236–242

    PubMed  CAS  Google Scholar 

  19. Kokko JP (1970) Sodium and water transport in the descending limb of Henle. J Clin Invest 49: 1838–1846

    Article  PubMed  CAS  Google Scholar 

  20. Miwa T, Imai M (1983) Flow dependent water permeability of the rabbit descending limb of Henle’s loop. Am J Physiol 245: F743 - F754

    PubMed  CAS  Google Scholar 

  21. Abramow M, Orci L (1980) On the “tightness” of the rabbit descending limb of the loop of Henle, physiological and morphological evidence. Int J Biochem 12: 23–27

    Article  PubMed  CAS  Google Scholar 

  22. Imai M, Hayashi M, Araki M (1984) Functional heterogeneity of the descending limbs of Henle’s loop. I. Internephron heterogeneity in the hamster kidney. Pflugers Arch 402: 385–392

    Google Scholar 

  23. Hebert SC, Andreoli TE (1980) Interactions of temperature and ADH on transport processes in cortical collecting tubules. Am J Physiol 238: F470 - F480

    PubMed  CAS  Google Scholar 

  24. Berry CA (1985) Characteristics of water diffusion in the rabbit proximal convoluted tubule. Am J Physiol 249: F729 - F738

    PubMed  CAS  Google Scholar 

  25. Imai M, Yasoshima K, Yoshitomi K (1990) Mechanism of water transport across the upper portion of the descending thin limb of long-looped nephron of hamsters. Pflugers Arch 415: 630–637

    Article  PubMed  CAS  Google Scholar 

  26. Imai M (1984) Functional heterogeneity of the descending limbs of Henle’s loop. II. Interspecies difference among rabbits, rats, and hamsters. Pflugers Arch 402: 393–401 27

    Google Scholar 

  27. Imai M, Taniguchi J, Yoshitomi K (1988) Transition of permeability properties along the iescending limb of long-loop nephron. Am J Physiol 254: F323 - F328

    PubMed  CAS  Google Scholar 

  28. Tabei K, Imai M (1986) Permselectivity for cations over anions in the upper portion of the descending limbs of Henle of long loop nephron isolated from hamsters. Pflugers Arch 406: 279–384

    Article  PubMed  CAS  Google Scholar 

  29. Yoshitomi K, Imai M (1990) Electrophysiological study of the upper part of long descending thin limb ( LDLu) (abstract ). Kidney Int 37: 576A

    Google Scholar 

  30. Lopez AG, Amzel LM, Markakis K, Guggino WB (1988) Cell volume regulation by the thin descending limb of Henle’s loop. Proc Natl Acad Sci USA 85: 2873–2877

    Article  Google Scholar 

  31. Kurtz I (1988) Apical and basolateral Na’/H’ exchange in the rabbit outer medullary thin descending limb of Henle: Role in intracellular pH regulation. J Membr Biol 106: 253–260

    Article  PubMed  CAS  Google Scholar 

  32. Koseki C, Matsushima Y, Yoshitomi K, Imai M (1989) Regulation of intracellular pH (pHi) in the upper part of descending limb of long-looped nephron (LDLu): a fluorometric study (abstract). Kidney Int 35: 457

    Google Scholar 

  33. Jamison RL, Work J, Schafer JA (1982) New pathways for potassium transport in the kidney. Am J Physiol 242: F297 - F312

    PubMed  CAS  Google Scholar 

  34. Imai M, Kokko JP (1974) Sodium chloride, urea and water transport in the thin ascending limb of Henle. Generation of osmotic gradient by passive diffusion of solutes. J Clin Invest 53: 393–402

    Google Scholar 

  35. Imai M, Kokko JP (1976) Mechanism of sodium and chloride transport in the thin ascending limb of Henle. J Clin Invest 58: 1054–1061

    Article  PubMed  CAS  Google Scholar 

  36. Imai M (1977) Function of the thin ascending limb of Henle of rats and hamsters perfused in vitro. Am J Physiol 232: F201 - F209

    PubMed  CAS  Google Scholar 

  37. Kondo Y, Yoshitomi K, Imai M (1987) Effects of anion transport inhibitors and ion substitution on Cl-transport in TAL of Henle’s loop. Am J Physiol 253: F1206 - F1215

    PubMed  CAS  Google Scholar 

  38. Kondo Y, Yoshitomi K, Imai M (1987) Effect of pH on Cl-transport in TAL of Henle’s loop. Am J Physiol 253: F1216 - F1222

    PubMed  CAS  Google Scholar 

  39. Kondo Y, Yoshitomi K, Imai M (1988) Effect of Cat. on Cl-transport in thin ascending limb of Henle’s loop. Am J Physiol 254: F232 - F239

    PubMed  CAS  Google Scholar 

  40. Isozaki T, Yoshitomi K, Imai M (1989) Effects of Cl-transport inhibitors on Cl-permeability across hamster ascending thin limb. Am J Physiol 257: F92 - F98

    PubMed  CAS  Google Scholar 

  41. Wieth JO, Brahm J (1985) Cellular anion transport. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology. Raven, New York, pp 49–89

    Google Scholar 

  42. Boron WF, Boulpaep EL (1983) Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO3- transport. J Gen Physiol 81: 53–94

    Article  PubMed  CAS  Google Scholar 

  43. Yoshitomi K, Frömter E (1984) Cell pH of rat proximal tubule in vivo and the conductive nature of peritubular HCO3- (OH-). Pflugers Arch 402: 300–305

    Article  PubMed  CAS  Google Scholar 

  44. Nelson DJ, Tang JM, Palmer LG (1984) Single-channel recordings of apical membrane chloride conductance in A6 epithelial cells. J Membr Biol 80: 81–89

    Article  PubMed  CAS  Google Scholar 

  45. Brahm J, Wieth JO (1977) Separate pathways for urea and water and for chloride for chicken erythrocytes. J Physiol (Lond) 266: 727–749

    CAS  Google Scholar 

  46. Wangemann P, Witter M, Di Stefano A, Englert HC, Lang HJ, Schlatter E, Greger R (1986) Cl-channel blockers in the thick ascending limb of the loop of Henle. Structure activity relationship. Pflugers Arch 407: S128 - S141

    Article  PubMed  CAS  Google Scholar 

  47. Yoshitomi K, Kondo Y, Imai M (1988) Evidence for conductive Cl-pathways across the cell membranes of the thin ascending limb of Henle’s loop. J Clin Invest 82: 866–871

    Article  PubMed  CAS  Google Scholar 

  48. Imai M, Kondo Y, Koseki C, Yoshitomi K (1988) Dual effect of N-ethylmaleimide on CI-transport across the thin ascending limb of Henle’s loop. Pflugers Arch 411: 520–528

    Article  PubMed  CAS  Google Scholar 

  49. Marty A, Tan VP, Trautmann A (1984) Three types of calcium-dependent channel in rat lacrimal glands. J Physiol (Lond) 357: 293–325

    CAS  Google Scholar 

  50. Kondo Y, Imai M (1987) Effects of glutaraldehyde on renal tubular function. II. Selective inhibition of Cl-transporter in the hamster thin ascending limb of Henle’s loop. Pflugers Arch 408: 484–490

    Google Scholar 

  51. Kokko JP, Rector F Jr (1972) Countercurrent multiplication without active transport in inner medulla. Kidney Int 2: 214–223

    Article  PubMed  CAS  Google Scholar 

  52. Stephenson JL (1972) Central core model of the renal counterflow system. Kidney Int 2: 85–94

    Article  PubMed  CAS  Google Scholar 

  53. Pennel JP, Lacy FB, Jamison R (1974) An in vivo study of the concentrating process in descending limb of Henle’s loop. Kidney Int 5: 337–347

    Article  Google Scholar 

  54. Taniguchi J, Tabei K, Imai M (1987) Profiles of water and solute transport along the descending limb: analysis by mathematical model. Am J Physiol 252: F393 - F402

    PubMed  CAS  Google Scholar 

  55. Imai M, Taniguchi J, Tabei K (1987) Function of thin loops of Henle. Kidney Int 31: 565–579

    Article  PubMed  CAS  Google Scholar 

  56. Imai M, Taniguchi J, Yoshitomi K (1988) Osmotic work across inner medullary collecting duct accomplished by difference in reflection coefficients for urea and NaCI. Pflugers Arch 412: 557–567

    Article  PubMed  CAS  Google Scholar 

  57. Chou CL, Sands JM, Nonoguchi H, Knepper MA (1990) Urea gradient-associated fluid absorption with urea =1 in rat terminal collecting duct. Am J Physiol 258: F1173 - F1180

    PubMed  CAS  Google Scholar 

  58. DuBose TD Jr, Lucci MS, Hogg RJ, Puccaco LR, Kokko JP, Carter NW (1983) Comparison of acidification parameters in superficial and deep nephron in rats. Am J Physiol 244: F479 - F503

    Google Scholar 

  59. Good D, Knepper MA (1985) Ammonia transport in the mammalian kidney. Am J Physiol 248: F459 - F471

    PubMed  CAS  Google Scholar 

  60. Buerkert J, Martin DT (1982) Ammonia handling by superficial and juxtamedullary nephrons in the rat: evidence for an ammonia shunt between the loop of Henle and the collecting duct. J Clin Invest 70: 1–12

    Article  PubMed  CAS  Google Scholar 

  61. Good DW, Knepper MA, Burg MB (1984) Ammonia and bicarbonate transport by thick ascending limb of rat kidney. Am J Physiol 247: F35 - F44

    PubMed  CAS  Google Scholar 

  62. Isozaki T, Yoshitomik K, Imai M (in press) Selective ion permeability across thin limb of Henle’s loop: interaction of Cl-and other halogens with anion antiport system. Kidney Int

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Japan

About this chapter

Cite this chapter

Imai, M. et al. (1991). Function of Thin Segments of Henle’s Loop. In: Hatano, M. (eds) Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-35158-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-35158-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70074-6

  • Online ISBN: 978-3-662-35158-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics