Skip to main content

Aerodynamic Design with Physics-Based Surrogates

  • Chapter
Springer Handbook of Computational Intelligence

Part of the book series: Springer Handbooks ((SHB))

  • 10k Accesses

Abstract

Details, references and guidelines are given about the adoption of surrogate models and reduced-order models within the aerodynamic shape optimization context. The aerodynamic design problem and its approximated version are introduced and discussed and then, an overview of various surrogate models and surrogate-based optimization methods is given. Subsequently, the concept of model order reduction is recalled, and the performance analysis of reduced-order models based on proper orthogonal decomposition (GlossaryTerm

POD

) is discussed. Within this context, some techniques to adaptively and globally improve the accuracy of GlossaryTerm

POD

-based surrogates are illustrated. Finally, an aerodynamic shape design problem of a transonic airfoil is used to practically analyze and compare the performances of various surrogate-based optimization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADGLIB:

adaptive genetic algorithm optimization library

AFPGA:

adaptive full POD genetic algorithm

AMPGA:

adaptive mixed-flow POD genetic algorithm

CFD:

computational fluid dynamics

CS:

cell saving

CST:

class-shape transformation

DACE:

design and analysis of computer experiments

DGA:

direct genetic algorithm

DOE:

design of experiment

EGO:

efficient global optimization

EI:

expected improvement

FOM:

full-order model

FPGA:

full POD genetic algorithm

GA:

genetic algorithm

JEGA:

John Eddy genetic algorithm

KGA:

Kriging-driven genetic algorithm

LHS:

latin hypercube sampling

MPE:

mean percentage error

MPGA:

mixed-flow POD genetic algorithm

PCA:

principal component analysis

POD:

proper orthogonal decomposition

RANS:

Reynolds-averaged Navier–Stokes

RBF:

radial basis function

ROM:

reduced-order model

SBO:

surrogate-based optimization

SBSO:

surrogate based shape optimization

SDPE:

standard deviation percentage error

SM:

surrogate model

SOGA:

single-objective genetic algorithm

SVD:

singular value decomposition

TS:

time saving

ZEN:

Zonal Euler–Navier–Stokes

References

  1. Advisory Council for Aviation Research and innovation in Europe: European aeronautics: A vision for 2020 (European Communities, Luxembourg 2001)

    Google Scholar 

  2. G. Schrauf: KATnet. Key Aerodynamic Technologies for Aircraft Performance Improvement (DGLR – Deutsche Gesellschaft für Luft- und Raumfahrt, Vienna 2006)

    Google Scholar 

  3. O. von Tronchin: The Airbus Global Market Forecast (Herndon 2010)

    Google Scholar 

  4. Boeing: Current Market Outlook 2009–2028 (Seattle 2009)

    Google Scholar 

  5. E. Torenbeek: Synthesis of Subsonic Airplane Design: An Introduction to the Preliminary Design of Subsonic General Aviation and Transport Aircraft, with Emphasis on Layout, Aerodynamic Design, Propulsion and Performance (Delft Univ. Press, Delft 1982) p. 620

    Book  Google Scholar 

  6. D.P. Raymer: Aircraft Design: A Conceptual Approach (AIAA, Reston 1999)

    Google Scholar 

  7. D.P. Raymer: RDS-Student, Software for Aircraft Design, Sizing, and Performance (AIAA, Reston 2000)

    Google Scholar 

  8. R.H. Myers, D.C. Montgomery: Response Surface Methodology: Process and Product Optimization Using Designed Experiments (Wiley, New York 1995)

    MATH  Google Scholar 

  9. A. Giunta, L.T. Watson: A comparison of approximation modeling techniques: Polynomial versus interpolating models, Proc. 11th AIAA/ISSMO Multidiscip. Anal. Optim. Conf., St. Louis (1998) pp. 392–404

    Google Scholar 

  10. H.M. Gutmann: A radial basis function method for global optimization, J. Global Optim. 19, 201–227 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. J.H. Friedman: Multivariate adaptive regression splines, Ann. Stat. 19(1), 1–141 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. M.H. Hassoun: Fundamentals of Artificial Neural Networks, A (MIT Press, Cambridge 1995)

    MATH  Google Scholar 

  13. A.I.J. Forrester, N.W. Bressloff, A.J. Keane: Optimization using surrogate models and partially converged computational fluid dynamics simulations, Proc. R. Soc. A Math. Phys. Eng. Sci. 462(2071), 2177–2204 (2006)

    Article  MATH  Google Scholar 

  14. P.I.K. Liakopoulos, I.C. Kampolis, K.C. Giannakoglou: Grid enabled, hierarchical distributed metamodel-assisted evolutionary algorithms for aerodynamic shape optimization, Future Gener. Comput. Syst. 24(7), 701–708 (2008)

    Article  Google Scholar 

  15. N.M. Alexandrov, R.M. Lewis, C.R. Gumbert, L.L. Green, P.A. Newman: Optimization with variable-fidelity models applied to wing design, ICASE Re. No. 99-49 (Institute for Computer Applications in Science and Engineering, Hampton 1999)

    Google Scholar 

  16. D. Quagliarella: Airfoil design using Navier-Stokes equations and an asymmetric multi-objective genetic algorithm, Proc. EUROGEN 2003 Conf., Barcelona (2003)

    Google Scholar 

  17. D.R. Jones, M. Schonlau, W.J. Welch: Efficient global optimization of expensive black-box functions, J. Global Optim. 13, 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Schonlau, W.J. Welch, D.R. Jones: Global versus local search in constrained optimization of computer models, IMS Lect. Notes 34, 11–25 (1998)

    MathSciNet  Google Scholar 

  19. D.R. Jones: A taxonomy of global optimization methods based on response surfaces, J. Global Optim. 21, 345–383 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. N. Queipo, R. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, P. Kevintucker: Surrogate-based analysis and optimization, Prog. Aerosp. Sci. 41(1), 1–28 (2005)

    Article  Google Scholar 

  21. T.W. Simpson, V.V. Toropov, V. Balabanov, F.A.C. Viana: Design and analysis of computer experiments in multidisciplinary design optimization: A review of how far we have come – or not, Proc. 12th AIAA/ISSMO Multidiscip. Anal. Optim. Conf. (2008) pp. 1–22

    Google Scholar 

  22. A.I.J. Forrester, A.J. Keane: Recent advances in surrogate-based optimization, Prog. Aerosp. Sci. 45(1–3), 50–79 (2009)

    Article  Google Scholar 

  23. A. Sóbester, S.J. Leary, A.J. Keane: A parallel updating scheme for approximating and optimizing high fidelity computer simulations, Struct. Multidiscip. Optim. 27, 371–383 (2004)

    Article  Google Scholar 

  24. T. Goel, R.T. Haftka, W. Shyy, N.V. Queipo: Ensemble of surrogates, Struct. Multidiscip. Optim. 33(3), 199–216 (2007)

    Article  Google Scholar 

  25. J.L. Lumley: The structure of inhomogeneous turbulent flows, Atmos. Turbul. Radio Wave Propag.-Proc. Int. Colloq. (1965) pp. 166–178

    Google Scholar 

  26. E. Iuliano: Towards a pod-based surrogate model for CFD optimization, Proc. ECCOMAS CFD Optim. Conf. (2011)

    Google Scholar 

  27. E. Iuliano, D. Quagliarella: Surrogate-based aerodynamic optimization via a zonal pod model, Proc. EUROGEN 2011 Conf., Barcelona (2011)

    Google Scholar 

  28. P.H. Cook, M.C.P. Firmin, M.A. McDonald: Aerofoil RAE 2822: Pressure Distributions, and Boundary Layer and Wake Measurements, Technical memorandum (Royal Aircraft Establishment, Famborough 1977)

    Google Scholar 

  29. B.M. Kulfan: Universal parametric geometry representation method, J. Aircr. 45(1), 142–158 (2008)

    Article  Google Scholar 

  30. D.C. Montgomery: Design and Analysis of Experiments (Wiley, New York 2006)

    Google Scholar 

  31. M.D. McKay, W.J. Conover, R.J. Beckman: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics 21, 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  32. M.S. Eldred, B.J. Bichon, B.M. Adams, S. Mahadevan: Overview of reliability analysis and design capabilities in DAKOTA with application to shape optimization of MEMS. In: Structural Design Optimization Considering Uncertainties, ed. by Y. Tsompanakis, N.D. Lagaros, M. Papadrakakis (Taylor Francis, New York 2008) pp. 401–432

    Google Scholar 

  33. J. Goblet, I. Lepot: Two Adaptive DOE Strategies for POD-Based Surrogate Models, Tech. Rep. (CENAERO 2010)

    Google Scholar 

  34. C. Sainvitu, M. Guenòt, I. Lepot, J. Goblet: Adaptive sampling strategies for POD-based surrogate models in an optimization framework, Proc. EUROGEN 2011 Conf. (2011)

    Google Scholar 

  35. S. Rippa: An algorithm for selecting a good value for the parameter c in radial basis function interpolation, Adv. Comput. Math. 11, 193–210 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Amato, P. Catalano: Non linear κ-$\varepsilon$ turbulence modeling for industrial applications, Proc. ICAS 2000 Conf. (2000)

    Google Scholar 

  37. D. Quagliarella, P. Iannelli, P.L. Vitagliano, G. Chinnici: Aerodynamic shape design using hybrid evolutionary computation and fitness approximation, AAIA 1st Int. Syst. Tech. Conf. (2004)

    Google Scholar 

  38. D. Quagliarella, A. Vicini: GAs for aerodynamic shape design I: General issues, shape parametrization problems and hybridization techniques, Lect. Ser. van Kareman Inst. Fluid Dyn. (2000)

    Google Scholar 

  39. D. Quagliarella, A. Vicini: GAs for aerodynamic shape design II: Multiobjective optimization and multi-criteria design, Lect. Ser. van Kareman Inst. Genet. Algorithm. Optim. Aeronaut. Turbomach. (2000)

    Google Scholar 

  40. J.E. Eddy, K. Lewis: Effective generation of Pareto sets using genetic programming, Proc. DETC '01 ASME Comput. Inform. Eng. Conf. (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emiliano Iuliano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Iuliano, E., Quagliarella, D. (2015). Aerodynamic Design with Physics-Based Surrogates. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43505-2_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43504-5

  • Online ISBN: 978-3-662-43505-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics