Skip to main content

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 1002 Accesses

Abstract

The development of highly sensitive, cost-effective, miniature nanoparticle-based colorimetric nanoprobes attracted great attention in recent years. Depending on their excellent performance in environmental and biological analysis, colorimetric nanoprobes have been widely used for sensing a wide range of analytes/targets, such as metallic cations, anions, small organic molecules, oligonucleotides, proteins, cancer cells, etc. In this chapter, we first introduce the optical absorption properties of nanomaterial, mainly focusing on the noble metal nanomaterials, such as sphere gold nanoparticles, gold nanorods, and silver nanoparticles. Then we discuss the colorimetric sensing strategies for ions, small molecules, oligonucleotides, and protein detection and cellular analysis, highlighting some of their technical challenges and the new trends by means of a set of selected recent applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  2. Ray PC (2010) Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chem Rev 110:5332–5365

    Article  CAS  Google Scholar 

  3. Halas NJ, Lal S, Chang WS, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111:3913–3961

    Article  CAS  Google Scholar 

  4. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578–1586

    Article  CAS  Google Scholar 

  5. Wang Z, Ma L (2009) Gold nanoparticle probes. Coord Chem Rev 253:1607–1618

    Article  CAS  Google Scholar 

  6. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782

    Article  CAS  Google Scholar 

  7. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779

    Article  CAS  Google Scholar 

  8. Wilson R (2008) The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev 37:2028–2045

    Article  CAS  Google Scholar 

  9. Motl NE, Smith AF, DeSantisa CJ, Skrabalak SE (2014) Engineering plasmonic metal colloids through composition and structural design. Chem Soc Rev. doi:10.1039/C3CS60347D

    Google Scholar 

  10. Zhang JZ, Noguez C (2008) Plasmonic optical properties and applications of metal nanostructures. Plasmonics 3:127–150

    Article  CAS  Google Scholar 

  11. Haes AJ, Haynes CL, McFarland AD, Schatz GC, Van Duyne RP, Zou S (2005) Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull 30:368–375

    Article  CAS  Google Scholar 

  12. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248

    Article  CAS  Google Scholar 

  13. Link S, El-Sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 54:331–366

    Article  CAS  Google Scholar 

  14. Griffin J, Singh AK, Senapati D, Lee E, Gaylor K, Jones-Boone J, Ray PC (2009) Sequence-specific HCV RNA quantification using the size-dependent nonlinear optical properties of gold nanoparticles. Small 5:839–845

    Article  CAS  Google Scholar 

  15. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426

    Article  CAS  Google Scholar 

  16. Ye X, Jin L, Caglayan H, Chen J, Xing G, Zheng C, Doan-Nguyen V, Kang Y, Engheta N, Kagan CR (2012) Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano 6:2804–2817

    Article  CAS  Google Scholar 

  17. Jakab A, Rosman C, Khalavka Y, Becker J, Trügler A, Hohenester U, Sönnichsen C (2011) Highly sensitive plasmonic silver nanorods. ACS Nano 5:6880–6885

    Article  CAS  Google Scholar 

  18. Jones MR, Osberg KD, Macfarlane RJ, Langille MR, Mirkin CA (2011) Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem Rev 111:3736–3827

    Article  CAS  Google Scholar 

  19. Murphy CJ, Thompson LB, Alkilany AM, Sisco PN, Boulos SP, Sivapalan ST, Yang JA, Chernak DJ, Huang J (2010) The many faces of gold nanorods. J Phys Chem Lett 1:2867–2875

    Article  CAS  Google Scholar 

  20. Zeng J, Roberts S, Xia Y (2010) Nanocrystal-based time–temperature indicators. Chem Eur J 16:12559–12563

    Article  CAS  Google Scholar 

  21. Singh AK, Senapati D, Neely A, Kolawole G, Hawker C, Ray PC (2009) Nonlinear optical properties of triangular silver nanomaterials. Chem Phys Lett 481:94–98

    Article  CAS  Google Scholar 

  22. Becker J, Zins I, Jakab A, Khalavka Y, Schubert O, Sönnichsen C (2008) Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods. Nano Lett 8:1719–1723

    Article  CAS  Google Scholar 

  23. Xiang Y, Wu X, Liu D, Li Z, Chu W, Feng L, Zhang K, Zhou W, Xie S (2008) Gold nanorod-seeded growth of silver nanostructures: from homogeneous coating to anisotropic coating. Langmuir 24:3465–3470

    Article  CAS  Google Scholar 

  24. Park G, Lee C, Seo D, Song H (2012) Full-color tuning of surface plasmon resonance by compositional variation of Au@Ag core-shell nanocubes with sulfides. Langmuir 28:9003–9009

    Article  CAS  Google Scholar 

  25. Su K-H, Wei Q-H, Zhang X, Mock J, Smith DR, Schultz S (2003) Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 3:1087–1090

    Article  CAS  Google Scholar 

  26. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  27. Liu M, Guyot-Sionnest P (2004) Synthesis and optical characterization of Au/Ag core/shell nanorods. J Phys Chem B 108:5882–5888

    Article  CAS  Google Scholar 

  28. Ma Y, Li W, Cho EC, Li Z, Yu T, Zeng J, Xie Z, Xia Y (2010) Au@ Ag core–shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties. ACS Nano 4:6725–6734

    Article  CAS  Google Scholar 

  29. Srivastava S, Frankamp BL, Rotello VM (2005) Controlled plasmon resonance of gold nanoparticles self-assembled with PAMAM dendrimers. Chem Mater 17:487–490

    Article  CAS  Google Scholar 

  30. Chen L, Lou TT, Yu CW, Kang Q, Chen LX (2011) N-1-(2-mercaptoethyl)thymine modification of gold nanoparticles: a highly selective and sensitive colorimetric chemosensor for Hg2+. Analyst 136:4770–4773

    Article  CAS  Google Scholar 

  31. Zhou Y, Wang S, Zhang K, Jiang X (2008) Visual detection of copper(II) by azide- and alkyne-functionalized gold nanoparticles using click chemistry. Angew Chem Int Ed 47:7454–7456

    Article  CAS  Google Scholar 

  32. Cao R, Li B, Zhang Y, Zhang Z (2011) Naked-eye sensitive detection of nuclease activity using positively-charged gold nanoparticles as colorimetric probes. Chem Commun 47:12301–12303

    Article  CAS  Google Scholar 

  33. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081

    Article  CAS  Google Scholar 

  34. Ai K, Liu Y, Lu L (2009) Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. J Am Chem Soc 131:9496–9497

    Article  CAS  Google Scholar 

  35. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    Article  CAS  Google Scholar 

  36. Li D, Wieckowska A, Willner I (2008) Optical analysis of Hg2+ ions by oligonucleotide–gold-nanoparticle hybrids and DNA-based machines. Angew Chem Int Ed 120:3991–3995

    Article  Google Scholar 

  37. Fu XL, Chen LX, Li JH, Lin M, You HY, Wang WH (2012) Label-free colorimetric sensor for ultrasensitive detection of heparin based on color quenching of gold nanorods by graphene oxide. Biosens Bioelectron 34:227–231

    Article  CAS  Google Scholar 

  38. Lou TT, Chen ZP, Wang YQ, Chen LX (2011) Blue-to-red colorimetric sensing strategy for Hg(2+) and Ag(+) via redox-regulated surface chemistry of gold nanoparticles. ACS Appl Mater Interfaces 3:1568–1573

    Article  CAS  Google Scholar 

  39. Chen Y-Y, Chang H-T, Shiang Y-C, Hung Y-L, Chiang C-K, Huang C-C (2009) Colorimetric assay for lead ions based on the leaching of gold nanoparticles. Anal Chem 81:9433–9439

    Article  CAS  Google Scholar 

  40. Malile B, Chen JI (2013) Morphology-based plasmonic nanoparticle sensors: controlling etching kinetics with target-responsive permeability gate. J Am Chem Soc 135:16042–16045

    Article  CAS  Google Scholar 

  41. Rex M, Hernandez FE, Campiglia AD (2006) Pushing the limits of mercury sensors with gold nanorods. Anal Chem 78:445–451

    Article  CAS  Google Scholar 

  42. Lou TT, Chen LX, Chen ZP, Wang YQ, Chen L, Li JH (2011) Colorimetric detection of trace copper ions based on catalytic leaching of silver-coated gold nanoparticles. ACS Appl Mater Interfaces 3:4215–4220

    Article  CAS  Google Scholar 

  43. Wang XK, Chen L, Chen LX (2013) Colorimetric determination of copper ions based on the catalytic leaching of silver from the shell of silver-coated gold nanorods. Microchim Acta 181:105–110

    Article  CAS  Google Scholar 

  44. Wang GQ, Chen ZP, Chen LX (2011) Mesoporous silica-coated gold nanorods: towards sensitive colorimetric sensing of ascorbic acid via target-induced silver overcoating. Nanoscale 3:1756–1759

    Article  CAS  Google Scholar 

  45. Xia Y, Ye J, Tan K, Wang J, Yang G (2013) Colorimetric visualization of glucose at the submicromole level in serum by a homogenous silver nanoprism-glucose oxidase system. Anal Chem 85:6241–6247

    Article  CAS  Google Scholar 

  46. Lee JS, Han MS, Mirkin CA (2007) Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew Chem Int Ed 46:4093–4096

    Article  CAS  Google Scholar 

  47. Huang CC, Chang HT (2007) Parameters for selective colorimetric sensing of mercury(II) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles. Chem Commun 12:1215–1217

    Google Scholar 

  48. Xue X, Wang F, Liu X (2008) One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. J Am Chem Soc 130:3244–3245

    Article  CAS  Google Scholar 

  49. Yu CJ, Cheng TL, Tseng WL (2009) Effects of Mn2+ on oligonucleotide-gold nanoparticle hybrids for colorimetric sensing of Hg2+: improving colorimetric sensitivity and accelerating color change. Biosens Bioelectron 25:204–210

    Article  CAS  Google Scholar 

  50. Xu Y, Deng L, Wang H, Ouyang X, Zheng J, Li J, Yang R (2011) Metal-induced aggregation of mononucleotides-stabilized gold nanoparticles: an efficient approach for simple and rapid colorimetric detection of Hg(II). Chem Commun 47:6039–6041

    Article  CAS  Google Scholar 

  51. Lou T, Chen L, Zhang C, Kang Q, You H, Shen D, Chen L (2012) A simple and sensitive colorimetric method for detection of mercury ions based on anti-aggregation of gold nanoparticles. Anal Methods 4:488

    Article  CAS  Google Scholar 

  52. Wang GL, Zhu XY, Jiao HJ, Dong YM, Li ZJ (2012) Ultrasensitive and dual functional colorimetric sensors for mercury (II) ions and hydrogen peroxide based on catalytic reduction property of silver nanoparticles. Biosens Bioelectron 31:337–342

    Article  CAS  Google Scholar 

  53. Chen L, Fu XL, Lu WH, Chen LX (2013) Highly sensitive and selective colorimetric sensing of Hg2+ based on the morphology transition of silver nanoprisms. ACS Appl Mater Interfaces 5:284–290

    Article  CAS  Google Scholar 

  54. Lin C-Y, Yu C-J, Lin Y-H, Tseng W-L (2010) Colorimetric sensing of silver (I) and mercury (II) ions based on an assembly of Tween 20-stabilized gold nanoparticles. Anal Chem 82:6830–6837

    Article  CAS  Google Scholar 

  55. Guo Y, Wang Z, Qu W, Shao H, Jiang X (2011) Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles. Biosens Bioelectron 26:4064–4069

    Article  CAS  Google Scholar 

  56. Wang Z, Lee JH, Lu Y (2008) Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Adv Mater 20:3263–3267

    Article  CAS  Google Scholar 

  57. Chai F, Wang C, Wang T, Li L, Su Z (2010) Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS Appl Mater Interfaces 2:1466–1470

    Article  CAS  Google Scholar 

  58. Kalluri JR, Arbneshi T, Khan SA, Neely A, Candice P, Varisli B, Washington M, McAfee S, Robinson B, Banerjee S, Singh AK, Senapati D, Ray PC (2009) Use of gold nanoparticles in a simple colorimetric and ultrasensitive dynamic light scattering assay: selective detection of arsenic in groundwater. Angew Chem Int Ed 48:9668–9671

    Article  CAS  Google Scholar 

  59. Xue Y, Zhao H, Wu Z, Li X, He Y, Yuan Z (2011) Colorimetric detection of Cd2+ using gold nanoparticles cofunctionalized with 6-mercaptonicotinic acid and L-cysteine. Analyst 136:3725–3730

    Article  CAS  Google Scholar 

  60. Dang YQ, Li HW, Wang B, Li L, Wu Y (2009) Selective detection of trace Cr3+ in aqueous solution by using 5,5’-dithiobis (2-nitrobenzoic acid)-modified gold nanoparticles. ACS Appl Mater Interfaces 1:1533–1538

    Article  CAS  Google Scholar 

  61. Li F-M, Liu J-M, Wang X-X, Lin L-P, Cai W-L, Lin X, Zeng Y-N, Li Z-M, Lin S-Q (2011) Non-aggregation based label free colorimetric sensor for the detection of Cr (VI) based on selective etching of gold nanorods. Sensor Actuators B Chem 155:817–822

    Article  CAS  Google Scholar 

  62. Zhang Z, Zhang J, Lou T, Pan D, Chen L, Qu C, Chen Z (2012) Label-free colorimetric sensing of cobalt(II) based on inducing aggregation of thiosulfate stabilized gold nanoparticles in the presence of ethylenediamine. Analyst 137:400–405

    Article  CAS  Google Scholar 

  63. Ma YR, Niu HY, Zhang XL, Cai YQ (2011) Colorimetric detection of copper ions in tap water during the synthesis of silver/dopamine nanoparticles. Chem Commun 47:12643–12645

    Article  CAS  Google Scholar 

  64. Wang SS, Chen ZP, Chen L, Liu RL, Chen LX (2013) Label-free colorimetric sensing of copper(II) ions based on accelerating decomposition of H2O2 using gold nanorods as an indicator. Analyst 138:2080–2084

    Article  CAS  Google Scholar 

  65. Chen ZP, Liu RL, Wang SS, Qu CL, Chen LX, Wang Z (2013) Colorimetric sensing of copper(ii) based on catalytic etching of gold nanorods. RSC Adv 3:13318

    Article  CAS  Google Scholar 

  66. Hung YL, Hsiung TM, Chen YY, Huang CC (2010) A label-free colorimetric detection of lead ions by controlling the ligand shells of gold nanoparticles. Talanta 82:516–522

    Article  CAS  Google Scholar 

  67. Lin S-Y, Liu S-W, Lin C-M, Chen C-H (2002) Recognition of potassium ion in water by 15-crown-5 functionalized gold nanoparticles. Anal Chem 74:330–335

    Google Scholar 

  68. Lin S-Y, Chen C-H, Lin M-C, Hsu H-F (2005) A cooperative effect of bifunctionalized nanoparticles on recognition: sensing alkali ions by crown and carboxylate moieties in aqueous media. Anal Chem 77:4821–4828

    Google Scholar 

  69. Kim S, Kim J, Lee NH, Jang HH, Han MS (2011) A colorimetric selective sensing probe for calcium ions with tunable dynamic ranges using cytidine triphosphate stabilized gold nanoparticles. Chem Commun 47:10299–10301

    Article  CAS  Google Scholar 

  70. Eom MS, Jang W, Lee YS, Choi G, Kwon YU, Han MS (2012) A bi-ligand co-functionalized gold nanoparticles-based calcium ion probe and its application to the detection of calcium ions in serum. Chem Commun 48:5566–5568

    Article  CAS  Google Scholar 

  71. Lisowski CE, Hutchison JE (2009) Malonamide-functionalized gold nanoparticles for selective, colorimetric sensing of trivalent lanthanide ions. Anal Chem 81:10246–10253

    Article  CAS  Google Scholar 

  72. Daniel WL, Han MS, Lee J-S, Mirkin CA (2009) Colorimetric nitrite and nitrate detection with gold nanoparticle probes and kinetic end points. J Am Chem Soc 131:6362–6363

    Article  CAS  Google Scholar 

  73. Xiao N, Yu C (2010) Rapid-response and highly sensitive noncross-linking colorimetric nitrite sensor using 4-aminothiophenol modified gold nanorods. Anal Chem 82:3659–3663

    Article  CAS  Google Scholar 

  74. Chen ZP, Zhang ZY, Qu CL, Pan DW, Chen LX (2012) Highly sensitive label-free colorimetric sensing of nitrite based on etching of gold nanorods. Analyst 137:5197–5200

    Article  CAS  Google Scholar 

  75. Tripathy SK, Woo JY, Han CS (2011) Highly selective colorimetric detection of hydrochloric acid using unlabeled gold nanoparticles and an oxidizing agent. Anal Chem 83:9206–9212

    Article  CAS  Google Scholar 

  76. Chen L, Lu WH, Wang XK, Chen LX (2013) A highly selective and sensitive colorimetric sensor for iodide detection based on anti-aggregation of gold nanoparticles. Sensor Actuators B Chem 182:482–488

    Article  CAS  Google Scholar 

  77. Zhang ZY, Zhang J, Qu CL, Pan DW, Chen ZP, Chen LX (2012) Label free colorimetric sensing of thiocyanate based on inducing aggregation of Tween 20-stabilized gold nanoparticles. Analyst 137:2682–2686

    Article  CAS  Google Scholar 

  78. Jiang Y, Zhao H, Zhu N, Lin Y, Yu P, Mao LQ (2008) A simple assay for direct colorimetric visualization of trinitrotoluene at picomolar levels using gold nanoparticles. Angew Chem Int Ed 47:8601–8604

    Article  CAS  Google Scholar 

  79. Dasary SS, Senapati D, Singh AK, Anjaneyulu Y, Yu H, Ray PC (2010) Highly sensitive and selective dynamic light-scattering assay for TNT detection using p-ATP attached gold nanoparticle. ACS Appl Mater Interfaces 2:3455–3460

    Article  CAS  Google Scholar 

  80. Radhakumary C, Sreenivasan K (2011) Naked eye detection of glucose in urine using glucose oxidase immobilized gold nanoparticles. Anal Chem 83:2829–2833

    Article  CAS  Google Scholar 

  81. Kong B, Zhu A, Luo Y, Tian Y, Yu Y, Shi G (2011) Sensitive and selective colorimetric visualization of cerebral dopamine based on double molecular recognition. Angew Chem Int Ed 50:1837–1840

    Article  CAS  Google Scholar 

  82. Feng JJ, Guo H, Li YF, Wang YH, Chen WY, Wang AJ (2013) Single molecular functionalized gold nanoparticles for hydrogen-bonding recognition and colorimetric detection of dopamine with high sensitivity and selectivity. ACS Appl Mater Interfaces 5:1226–1231

    Article  CAS  Google Scholar 

  83. Guo L, Zhong J, Wu J, Fu F, Chen G, Zheng X, Lin S (2010) Visual detection of melamine in milk products by label-free gold nanoparticles. Talanta 82:1654–1658

    Article  CAS  Google Scholar 

  84. Zhang Y, Li B, Xu C (2010) Visual detection of ascorbic acid via alkyne-azide click reaction using gold nanoparticles as a colorimetric probe. Analyst 135:1579–1584

    Article  CAS  Google Scholar 

  85. Wang J, Wang L, Liu X, Liang Z, Song S, Li W, Li G, Fan C (2007) A gold nanoparticle-based aptamer target binding readout for ATP assay. Adv Mater 19:3943–3946

    Article  CAS  Google Scholar 

  86. Liu J, Lu Y (2004) Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor. Anal Chem 76:1627–1632

    Article  CAS  Google Scholar 

  87. Liu J, Lu Y (2005) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem Int Ed 45:90–94

    Article  CAS  Google Scholar 

  88. Zhang J, Wang L, Pan D, Song S, Boey FY, Zhang H, Fan C (2008) Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small 4:1196–1200

    Article  CAS  Google Scholar 

  89. Sun J, Ge J, Liu W, Fan Z, Zhang H, Wang P (2011) Highly sensitive and selective colorimetric visualization of streptomycin in raw milk using Au nanoparticles supramolecular assembly. Chem Commun 47:9888–9890

    Article  CAS  Google Scholar 

  90. Zhang X, Zhao H, Xue Y, Wu Z, Zhang Y, He Y, Li X, Yuan Z (2012) Colorimetric sensing of clenbuterol using gold nanoparticles in the presence of melamine. Biosens Bioelectron 34:112–117

    Article  CAS  Google Scholar 

  91. Kim YS, Kim JH, Kim IA, Lee SJ, Jurng J, Gu MB (2010) A novel colorimetric aptasensor using gold nanoparticle for a highly sensitive and specific detection of oxytetracycline. Biosens Bioelectron 26:1644–1649

    Article  CAS  Google Scholar 

  92. Sun J, Guo L, Bao Y, Xie J (2011) A simple, label-free AuNPs-based colorimetric ultrasensitive detection of nerve agents and highly toxic organophosphate pesticide. Biosens Bioelectron 28:152–157

    Article  CAS  Google Scholar 

  93. Zhang M, Liu YQ, Ye BC (2011) Rapid and sensitive colorimetric visualization of phthalates using UTP-modified gold nanoparticles cross-linked by copper(II). Chem Commun 47:11849–11851

    Article  CAS  Google Scholar 

  94. Li L, Li B (2009) Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes. Analyst 134:1361–1365

    Article  CAS  Google Scholar 

  95. Sudeep P, Joseph SS, Thomas KG (2005) Selective detection of cysteine and glutathione using gold nanorods. J Am Chem Soc 127:6516–6517

    Article  CAS  Google Scholar 

  96. Zhang M, Ye BC (2011) Colorimetric chiral recognition of enantiomers using the nucleotide-capped silver nanoparticles. Anal Chem 83:1504–1509

    Article  CAS  Google Scholar 

  97. Tan YN, Lee KH, Su X (2011) Study of single-stranded DNA binding protein-nucleic acids interactions using unmodified gold nanoparticles and its application for detection of single nucleotide polymorphisms. Anal Chem 83:4251–4257

    Article  CAS  Google Scholar 

  98. Zu Y, Ting AL, Yi G, Gao Z (2011) Sequence-selective recognition of nucleic acids under extremely low salt conditions using nanoparticle probes. Anal Chem 83:4090–4094

    Article  CAS  Google Scholar 

  99. Wei H, Li B, Li J, Wang E, Dong S (2007) Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chem Commun 36:3735–3737

    Google Scholar 

  100. Zhen Z, Tang LJ, Long H, Jiang JH (2012) Enzymatic immuno-assembly of gold nanoparticles for visualized activity screening of histone-modifying enzymes. Anal Chem 84:3614–3620

    Article  CAS  Google Scholar 

  101. Huang C-C, Huang Y-F, Cao Z, Tan W, Chang H-T (2005) Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal Chem 77:5735–5741

    Article  CAS  Google Scholar 

  102. Xue W, Zhang G, Zhang D (2011) A sensitive colorimetric label-free assay for trypsin and inhibitor screening with gold nanoparticles. Analyst 136:3136–3141

    Article  CAS  Google Scholar 

  103. Liu D, Chen W, Tian Y, He S, Zheng W, Sun J, Wang Z, Jiang X (2012) A highly sensitive gold-nanoparticle-based assay for acetylcholinesterase in cerebrospinal fluid of transgenic mice with Alzheimer’s disease. Adv Healthc Mater 1:90–95

    Article  CAS  Google Scholar 

  104. Wu Z, Wu ZK, Tang H, Tang LJ, Jiang JH (2013) Activity-based DNA-gold nanoparticle probe as colorimetric biosensor for DNA methyltransferase/glycosylase assay. Anal Chem 85:4376–4383

    Article  CAS  Google Scholar 

  105. Medley CD, Smith JE, Tang Z, Wu Y, Bamrungsap S, Tan W (2008) Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal Chem 80:1067–1072

    Article  CAS  Google Scholar 

  106. Lu W, Arumugam SR, Senapati D, Singh AK, Arbneshi T, Khan SA, Yu H, Ray PC (2010) Multifunctional oval-shaped gold-nanoparticle-based selective detection of breast cancer cells using simple colorimetric and highly sensitive two-photon scattering assay. ACS Nano 4:1739–1749

    Article  CAS  Google Scholar 

  107. Kim Y, Johnson RC, Hupp JT (2001) Gold nanoparticle-based sensing of “spectroscopically silen” heavy metal ions. Nano Lett 1:165–167

    Article  CAS  Google Scholar 

  108. Beqa L, Singh AK, Khan SA, Senapati D, Arumugam SR, Ray PC (2011) Gold nanoparticle-based simple colorimetric and ultrasensitive dynamic light scattering assay for the selective detection of Pb(II) from paints, plastics, and water samples. ACS Appl Mater Interfaces 3:668–673

    Article  CAS  Google Scholar 

  109. Wei H, Li B, Li J, Dong S, Wang E (2008) DNAzyme-based colorimetric sensing of lead (Pb(2+)) using unmodified gold nanoparticle probes. Nanotechnology 19:095501

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingxin Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Chen, L., Wang, Y., Fu, X., Chen, L. (2014). Colorimetric Nanoprobes. In: Novel Optical Nanoprobes for Chemical and Biological Analysis. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43624-0_2

Download citation

Publish with us

Policies and ethics