Skip to main content

Sampling-Based Proofs of Almost-Periodicity Results and Algorithmic Applications

  • Conference paper
Automata, Languages, and Programming (ICALP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8572))

Included in the following conference series:

Abstract

We give new and simple combinatorial proofs of almost-periodicity results for sumsets of sets with small doubling in the spirit of Croot and Sisask [7], whose almost-periodicity lemma has had far-reaching implications in additive combinatorics. We provide an alternative point of view which relies only on Chernoff’s bound for sampling, and avoids the need for L p-norm estimates used in the original proof of Croot and Sisask.

We demonstrate the usefulness of our new approach by showing that one can easily deduce from it two significant recent results proved using Croot and Sisask almost-periodicity – the quasipolynomial Bogolyubov-Ruzsa lemma due to Sanders [22] and a result on large subspaces contained in sumsets of dense sets due to Croot, Laba and Sisask [6].

We then turn to algorithmic applications, and show that our approach allows for almost-periodicity proofs to be converted in a natural way to probabilistic algorithms that decide membership in almost-periodic sumsets of dense subsets of \(\mathbb{F}_2^n\). Exploiting this, we give a new algorithmic version of the quasipolynomial Bogolyubov-Ruzsa lemma.

Together with the results by the last two authors [27], this implies an algorithmic version of the quadratic Goldreich-Levin theorem in which the number of terms in the quadratic Fourier decomposition of a given function, as well as the running time of the algorithm, are quasipolynomial in the error parameter ε. The algorithmic version of the quasipolynomial Bogolyubov-Ruzsa lemma also implies an improvement in running time and performance of the self-corrector for the Reed-Muller code of order 2 at distance 1/2 − ε in [27].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Sasson, E., Lovett, S., Ron-Zewi, N.: An additive combinatorics approach relating rank to communication complexity. In: FOCS, pp. 177–186. IEEE Computer Society (2012)

    Google Scholar 

  2. Ben-Sasson, E., Zewi, N.: From affine to two-source extractors via approximate duality. In: Fortnow, L., Vadhan, S.P. (eds.) STOC, pp. 177–186. ACM (2011)

    Google Scholar 

  3. Bhowmick, A., Dvir, Z., Lovett, S.: Lower bounds on vector matching codes. In: STOC. ACM (2013)

    Google Scholar 

  4. Candela, P.: On the structure of steps of three-term arithmetic progressions in a dense set of integers. Bull. Lond. Math. Soc. 42(1), 1–14 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chang, M.-C.: A polynomial bound in Freiman’s theorem. Duke Math. J. 113(3), 399–419 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Croot, E., Łaba, I., Sisask, O.: Arithmetic progressions in sumsets and Lp-almost-periodicity (March 2011), http://arxiv.org/abs/1103.6000v1

  7. Croot, E., Sisask, O.: A probabilistic technique for finding almost-periods of convolutions. Geom. Funct. Anal. 20(6), 1367–1396 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Goldreich, O., Levin, L.: A hard-core predicate for all one-way functions. In: STOC, pp. 25–32 (1989)

    Google Scholar 

  9. Gopalan, P.: A fourier-analytic approach to reed-muller decoding. In: FOCS, pp. 685–694. IEEE Computer Society (2010)

    Google Scholar 

  10. Gopalan, P., Klivans, A.R., Zuckerman, D.: List-decoding reed-muller codes over small fields. In: Dwork, C. (ed.) STOC, pp. 265–274. ACM (2008)

    Google Scholar 

  11. Gowers, T., Wolf, J.: Linear forms and quadratic uniformity for functions on ℤ N . J. Anal. Math., arXiv:1002.2210 (2010) (to appear)

    Google Scholar 

  12. Gowers, T., Wolf, J.: The true complexity of a system of linear equations. Proc. Lond. Math. Soc. (3),100(1), 155–176 (2010)

    Google Scholar 

  13. Gowers, T., Wolf, J.: Linear forms and quadratic uniformity for functions on \(\mathbb{F}_p^n\). Mathematika 57(2), 215–237 (2012)

    Article  MathSciNet  Google Scholar 

  14. Green, B.: Finite field models in additive combinatorics. In: Surveys in Combinatorics 2005. London Math. Soc. Lecture Note Ser, vol. 327, pp. 1–27. Cambridge Univ. Press, Cambridge (2005)

    Chapter  Google Scholar 

  15. Green, B.: Montréal notes on quadratic Fourier analysis. In: Additive Combinatorics. CRM Proc. Lecture Notes, vol. 43, pp. 69–102. Amer. Math. Soc., Providence (2007)

    Google Scholar 

  16. Green, B., Tao, T.: An inverse theorem for the Gowers U 3(G) norm. Proc. Edinb. Math. Soc (2), 51(1), 73–153 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hatami, H., Lovett, S.: Higher-order Fourier analysis of \(\mathbb{F}_p^n\) and the complexity of systems of linear forms. Geom. Func. Anal (2011) (to appear)

    Google Scholar 

  18. Impagliazzo, R., Moore, C., Russell, A.: An Entropic Proof of Chang’s Inequality (May 2012), http://arxiv.org/abs/1205.0263v1

  19. Lovett, S.: An exposition of Sanders’s quasi-polynomial Freiman-Ruzsa theorem. Electronic Colloquium on Computational Complexity (ECCC) 19, 29 (2012)

    Google Scholar 

  20. Ruzsa, I.: An analog of Freiman’s theorem in groups. Astérisque xv(258), 323–326 (1999); Structure theory of set addition

    Google Scholar 

  21. Samorodnitsky, A.: Low-degree tests at large distances. In: STOC, pp. 506–515 (2007)

    Google Scholar 

  22. Sanders, T.: On the Bogolyubov-Ruzsa lemma. Anal. PDE (2010) (to appear)

    Google Scholar 

  23. Sanders, T.: Green’s sumset problem at density one half. Acta Arith. 146(1), 91–101 (2011)

    MATH  MathSciNet  Google Scholar 

  24. Sanders, T.: On Roth’s theorem on progressions. Ann. of Math (2), 174(1), 619–636 (2011)

    Google Scholar 

  25. Sanders, T.: Lecture notes on applications of commutative harmonic analysis (July 2012), http://people.maths.ox.ac.uk/~sanders

  26. Tao, T., Vu, V.: Additive combinatorics. Cambridge University Press (2006)

    Google Scholar 

  27. Tulsiani, M., Wolf, J.: Quadratic Goldreich-Levin theorems. In: FOCS, pp. 619–628 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ben-Sasson, E., Ron-Zewi, N., Tulsiani, M., Wolf, J. (2014). Sampling-Based Proofs of Almost-Periodicity Results and Algorithmic Applications. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43948-7_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43948-7_79

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43947-0

  • Online ISBN: 978-3-662-43948-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics