Skip to main content

Localization Ability and Polarity Effect of Underwater Electro-Tactile Stimulation

  • Conference paper
  • First Online:
Haptics: Neuroscience, Devices, Modeling, and Applications (EuroHaptics 2014)

Abstract

In this paper, we describe a method for presenting underwater tactile electrical stimulation for in-bath entertainment. We investigated the localization abilities of participants and the polarity effect of the stimulation, and found that underwater electro-tactile anodic stimulation produced a stronger sensation than did cathodic stimulation. Furthermore, we found that the participants were able to successfully identify the direction of the tactile stimulation and the direction of rotation during anodic stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirai, S., Sakakibara, Y., Hayakawa, S.: Bathcratch: touch and sound-based DJ controller implemented on a bathtub. In: Nijholt, A., Romão, T., Reidsma, D. (eds.) ACE 2012. LNCS, vol. 7624, pp. 44–56. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Koike, H., Matoba, Y., Takahashi, Y.: AquaTop display: interactive water surface for viewing and manipulating information in a bathroom. In: Proceedings of the 2013 ACM International Conference on Interactive Tabletops and Surfaces, pp. 155–164. ACM (2013)

    Google Scholar 

  3. Lemmens, P., Crompvoets, F., Brokken, D., van den Eerenbeemd, J., DeVries, G.J.: A body-conforming tactile jacket to enrich movie viewing. In: Third Joint EuroHaptics Conference, 2009 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, World Haptics 2009, pp. 7–12. IEEE (2009)

    Google Scholar 

  4. Karam, M., Branje, C., Nespoli, G., Thompson, N., Russo, F.A., Fels, D.I.: The emoti-chair: an interactive tactile music exhibit. In: CHI’10 Extended Abstracts on Human Factors in Computing Systems, pp. 3069–3074. ACM (2010)

    Google Scholar 

  5. Iwamoto, T., Tatezono, M., Shinoda, H.: Non-contact method for producing tactile sensation using airborne ultrasound. In: Ferre, M. (ed.) EuroHaptics 2008. LNCS, vol. 5024, pp. 504–513. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Bach-y-Rita, P., Kaczmarek, K.A., Tyler, M.E., Garcia-Lara, J.: From perception with a 49-point electrotactile stimulus array on the tongue. J. Rehabil. Res. Dev. 35, 427–430 (1998). (A technical note)

    Google Scholar 

  7. Kajimoto, H.: Skeletouch: transparent electro-tactile display for mobile surfaces. In: SIGGRAPH Asia 2012 Emerging Technologies, p. 21. ACM (2012)

    Google Scholar 

  8. Collins, C.C.: Tactile television-mechanical and electrical image projection. IEEE Trans. Man-Mach. Syst. 11(1), 65–71 (1970)

    Article  Google Scholar 

  9. Howard, M.: Electric bath. US1193018A. (1916. 08. 01)

    Google Scholar 

  10. Guidance Document for Powered muscle Stimulator 510(k)s. U.S. Department of Health and Human Services Food and Drug Administration Center for Devices and Radiological Health. http://www.fda.gov/cdrh/ode/2246.pdf

  11. Higashiyama, A., Rollman, G.B.: Perceived locus and intensity of electrocutaneous stimulation. IEEE Trans. Biomed. Eng. 38, 679–686 (1991)

    Article  Google Scholar 

  12. Kaczmarek, K.A., Tyler, M.E., Bach-y-Rita, P.: Electrotactile haptic display on the fingertips: preliminary results. In: Proceedings of the 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1994. Engineering Advances: New Opportunities for Biomedical Engineers, pp. 940–941 (1994)

    Google Scholar 

  13. Kaczmarek, K.A., Tyler, M.E., Brisben, A.J., Johnson, K.O.: The afferent neural response to electrotactile stimuli: preliminary results. IEEE Trans. Rehabil. Eng. 8(2), 268–270 (2000)

    Article  Google Scholar 

  14. Kajimoto, H., Kawakami, N., Maeda, T., Tachi, S.: Tactile feeling display using functional electrical stimulation. In: Proceedings of the 1999 ICAT, p. 133 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taira Nakamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakamura, T., Katoh, M., Hachisu, T., Okazaki, R., Sato, M., Kajimoto, H. (2014). Localization Ability and Polarity Effect of Underwater Electro-Tactile Stimulation. In: Auvray, M., Duriez, C. (eds) Haptics: Neuroscience, Devices, Modeling, and Applications. EuroHaptics 2014. Lecture Notes in Computer Science(), vol 8618. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44193-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44193-0_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44192-3

  • Online ISBN: 978-3-662-44193-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics