Skip to main content

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 83))

  • 1528 Accesses

Abstract

This chapter discusses disruptions in tokamaks. Disruptions are a rapid loss of the confined plasma and its current. Their consequences include large heat and mechanical loads on structures surrounding the plasma, and in some cases the generation of a very high energy runaway electron beam carrying a substantial fraction of the original plasma current. These consequences become worse in larger tokamaks, which have higher currents and magnetic fields, and are therefore a major design constraint. After outlining the physics of disruptions, this chapter discusses the methods used to detect impending disruptions, means to avoid the disruptions and ways to mitigate the consequences if a disruption is unavoidable. This is an intensely studied topic and means to detect and mitigate a very high percentage of disruptions are becoming increasingly well developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.F. Matthews et al., in Proceedings of the 19th International Conference on Fusion Energy, Lyon, 2002 (IAEA, Vienna, 2002). Paper EX/D1-1 http://www-pub.iaea.org/mtcd/publications/pdf/csp_019c/pdf/exd1_1.pdf

  2. T.C. Hender et al., Chapter 3: MHD stability, operational limits and disruptions. Nucl. Fusion 47, S128 (2007)

    Google Scholar 

  3. M. Sugihara et al., Disruption scenarios, their mitigation and operation window in ITER. Nucl. Fusion 47, 337 (2007)

    Article  ADS  Google Scholar 

  4. S. Konovalov et al., Characterization of runaway electrons in ITER, in Proceedings of the 23rd International Conference on Fusion Energy, Daejeon, 2010 (IAEA, Vienna, 2010). Paper ITR/P1-32

    Google Scholar 

  5. M. Murakami, J.D. Callen, L.A. Berry, Nucl. Fusion 16, 347 (1976)

    Article  ADS  Google Scholar 

  6. P.E. Stott et al., Controlled Fusion and Plasma Physics, in Proceedings of the 8th European Conference, Prague, vol. 1 (European Physical Society, 1979), p. 151

    Google Scholar 

  7. M. Greenwald, Density limits in toroidal plasmas. Plasma Phys. Control. Fusion 44, R27–R80 (2002)

    Article  ADS  Google Scholar 

  8. F.C. Schuller, Disruptions in tokamaks. Plasma Phys. Control. Fusion 37, A135–Al62 (1995)

    Google Scholar 

  9. D.A. Gates, L. Delgado-Aparicio, Origin of tokamak density limit scalings. Phys. Rev. Lett. 108, 165004 (2012)

    Article  ADS  Google Scholar 

  10. P.C. de Vries et al., Statistical analysis of disruptions in JET. Nucl. Fusion 49, 055011 (2009)

    Article  ADS  Google Scholar 

  11. M.F.F. Nave, J.A. Wesson, Mode locking in tokamaks. Nucl. Fusion 30, 2575 (1990)

    Article  Google Scholar 

  12. J.W. Connor et al., A review of internal transport barrier physics for steady-state operation of tokamaks. Nucl. Fusion 44, R1 (2004)

    Article  ADS  Google Scholar 

  13. G.T.A. Huysmans et al., MHD stability of optimized shear discharges in JET. Nucl. Fusion 39, 1489 (1999)

    Article  ADS  Google Scholar 

  14. R.S. Granetz et al., Disruptions and halo currents in Alcator C-Mod. Nucl. Fusion 36, 545 (1996)

    Article  ADS  Google Scholar 

  15. V. Riccardo, A. Loarte, and the JET EFDA Contributors, Timescale and magnitude of plasma thermal energy loss before and during disruptions in JET. Nucl. Fusion 45, 1427 (2005)

    Google Scholar 

  16. P.C. de Vries et al., The impact of the ITER-like wall at JET on disruptions. Plasma Phys. Control. Fusion 54, 124032 (2012)

    Article  ADS  Google Scholar 

  17. J.I. Paley, Energy low during disruptions. Ph.D. thesis, University of London (Imperial College), 2006

    Google Scholar 

  18. Y.-K.M. Peng, D.J. Strickler, Features of spherical torus plasmas. Nucl. Fusion 26, 769 (1986)

    Article  Google Scholar 

  19. S.P. Gerhardt, Dynamics of the disruption halo current toroidal asymmetry in NSTX. Nucl. Fusion 53, 023005 (2013)

    Article  ADS  Google Scholar 

  20. V. Riccardo et al., Progress in understanding halo current at JET. Nucl. Fusion 49, 055012 (2009)

    Article  ADS  Google Scholar 

  21. G. Pautasso et al., The halo current in ASDEX Upgrade. Nucl. Fusion 51, 043010 (2011)

    Article  ADS  Google Scholar 

  22. D.A. Humphreys, A.G. Kellman, Analytic modeling of axisymmetric disruption halo currents. Phys. Plasmas 6, 2742 (1999)

    Article  ADS  Google Scholar 

  23. M. Sugihara et al., Analysis of disruption scenarios and their possible mitigation in ITER. in Proceedings of the 20th International Conference on Fusion Energy, Vilamoura 2004 (IAEA, Vienna, 2004). CD-ROM IT/P3-29

    Google Scholar 

  24. L.E. Zakharov et al., The theory of the kink mode during the vertical plasma disruption events in tokamaks. Phys. Plasmas 15, 062507 (2008)

    Article  ADS  Google Scholar 

  25. H.R. Strauss, R. Paccagnella, J. Breslau, Wall forces produced during ITER disruptions. Phys. Plasmas 17, 082505 (2010)

    Article  ADS  Google Scholar 

  26. H. Dreicer, Electron and ion runaway in a fully ionized gas. Phys. Rev. 117, 329–342 (1960)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. H.M. Smith, E. Verwichte, Hot tail runaway electron generation in tokamak disruptions. Phys. Plasmas 15, 072502 (2008)

    Article  ADS  Google Scholar 

  28. R.D. Gill et al., Direct observations of runaway electrons during disruptions in the JET tokamak. Nucl. Fus 40, 163 (2000)

    Article  ADS  Google Scholar 

  29. M.N. Rosenbluth, S.V. Putvinski, Theory for avalanche of runaway electrons in tokamaks. Nucl. Fusion 37, 1355 (1997)

    Article  ADS  Google Scholar 

  30. J.J. Cordier, Tore Supra experience on actively cooled high heat flux components. Fusion Eng Design 61–62, 71–80 (2002)

    Google Scholar 

  31. G. Martin et al., Disruption mitigation on Tore Supra, in Proceedings of the 20th International Conference on Fusion Energy, Vilamoura, 2004 (IAEA, Vienna, 2004). CD-ROM file EX/10-6Rc

    Google Scholar 

  32. A. Loarte et al., Magnetic energy flows during the current quench and termination of disruptions with runaway current plateau formation in JET and implications for ITER. Nucl. Fusion 51, 073004 (2011)

    Article  ADS  Google Scholar 

  33. M. Jouve et al., Real-Time Protection of the “ITER-Like Wall at JET” EFDA JET preprint EFDA–JET–CP(11)06/01 (2011)

    Google Scholar 

  34. C.M. Bishop, Neural Networks for Pattern Recognition (Clarendon, Oxford, 1995)

    Google Scholar 

  35. J.V. Hernandez et al., Neural network prediction of some classes of tokamak disruption. Nucl. Fusion 36, 1009–1017 (1996)

    Article  ADS  Google Scholar 

  36. A. Vannucci et al., Forecast of TEXT plasma disruptions using soft X rays as input signal in neural network. Nucl. Fusion 39, 255–262 (1999)

    Article  ADS  Google Scholar 

  37. A. Sengupta, P. Ranjan, Forecasting disruptions in the ADITYA tokamak using neural networks. Nucl. Fusion 40, 1993–2008 (2000)

    Article  ADS  Google Scholar 

  38. D. Wroblewski et al., Tokamak disruption alarm based on neural network model of high-beta limit. Nucl. Fusion 37, 725–741 (1997)

    Article  ADS  Google Scholar 

  39. R. Yoshino, Neural-net disruption predictor in JT-60U. Nucl. Fusion 43, 1771–1786 (2003)

    Article  ADS  Google Scholar 

  40. R. Yoshino, Neural-net predictor for beta limit disruptions in JT-60U. Nucl. Fusion 45, 1232–1246 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  41. F. Milani, Disruption Prediction at JET. Ph.D. thesis, University of Aston, Birmingham UK, 1998

    Google Scholar 

  42. B. Cannas et al., Disruptions forecasting at JET using neural networks. Nucl. Fusion 44, 68–76 (2004)

    Article  ADS  Google Scholar 

  43. B. Cannas et al., Neural approaches to disruption prediction at JET, in 31st EPS Conference on Plasma Physics (London, UK), vol. 28 G1.167 (2004)

    Google Scholar 

  44. T. Kohonen, Self Organ. Map Proc. IEEE 78, 1464–1480 (1990)

    Google Scholar 

  45. B. Cannas et al., A prediction tool for real-time application in the disruption prediction system at JET. Nucl. Fusion 47, 1559–1569 (2007)

    Article  ADS  Google Scholar 

  46. G. Pautasso, O. Gruber, Study of disruptions in ASDEX Upgrade. Fusion Sci. Tech. 44, 716 (2003)

    Google Scholar 

  47. B. Cannas et al., An adaptive real-time disruption predictor for ASDEX Upgrade. Nucl. Fusion 50, 075004 (2010)

    Article  ADS  Google Scholar 

  48. C.G. Windsor et al., A cross-tokamak neural network disruption predictor for the JET and ASDEX Upgrade tokamaks. Nucl. Fusion 45, 337–350 (2005)

    Article  ADS  Google Scholar 

  49. G. Vaglisindi et al., A disruption predictor based on fuzzy logic applied to JET database. IEEE Trans. Plas. Sci. 36, 253–262 (2008)

    Article  ADS  Google Scholar 

  50. A. Murari et al., Latest developments in data analysis tools for disruption prediction and for the exploration of multimachine operational spaces, in Proceedings of the 24th International Conference on Fusion Energy, San Diego, 2012 (IAEA, Vienna, 2013). CD-ROM EX/P8-04

    Google Scholar 

  51. Y. Zhang et al., Prediction of disruptions on ASDEX Upgrade using discriminant analysis. Nucl. Fusion 51, 063039 (2011)

    Article  ADS  Google Scholar 

  52. S.P. Gerhardt et al., Detection of disruptions in the high-β spherical torus NSTX. Nucl. Fusion 53, 063021 (2013)

    Article  ADS  Google Scholar 

  53. J. Vega et al, Results of the JET real-time disruption predictor in the ITER-like wall campaigns. Fus. Eng. Des. 88, 1228 (2013)

    Google Scholar 

  54. G.A. Rattá et al., Feature extraction for improved disruption prediction analysis at JET. Rev. Sci Instrum. 79, 10F328 (2008)

    Article  Google Scholar 

  55. JM. Lopez et al., Implementation of the disruption predictor APODIS in JET’s real-time network using the MARTe Framework, EFDA JET report EFDA-JET-CP(12)03/04 (2012)

    Google Scholar 

  56. S. Dormido-Canto et al., Development of an efficient real-time disruption predictor from scratch on JET and implications for ITER. Nucl. Fusion 53, 113001 (2013)

    Article  ADS  Google Scholar 

  57. A. Murari et al., Clustering based on the geodesic distance on Gaussian manifolds for the automatic classification of disruptions. Nucl. Fusion 53, 033006 (2013)

    Article  ADS  Google Scholar 

  58. A.H. Boozer, Theory of tokamak disruptions. Phys. Plasmas 19, 058101 (2012)

    Google Scholar 

  59. J.P. Goedbloed et al., MHD spectroscopy: free boundary modes (ELMs) and external excitation of TAE modes. Plasma Phys. Control. Fusion 35, B277 (1993)

    Article  ADS  Google Scholar 

  60. A. Fasoli et al., MHD spectroscopy. Plasma Phys. Control. Fusion 44, B159 (2002)

    Article  Google Scholar 

  61. H. Reimerdes et al., Measurement of the resistive-wall-mode stability in a rotating plasma using active MHD spectroscopy. Phys. Rev. Lett. 93, 135002 (2004)

    Article  ADS  Google Scholar 

  62. D. Testa et al., Real-time measurements of damping rates and instability limits for MHD modes on the JET Tokamak, in Proceedings of the 27th EPS Conference on Controlled Fusion and Plasma Physics, vol. 24B (Budapest Hungary, 2000), p. 1429

    Google Scholar 

  63. A. Kraemer-Flecken et al., Nucl. Fusion 43, 1437 (2003)

    Article  ADS  Google Scholar 

  64. V. Mertens et al., Fusion Sci. Technol. 44, 593 (2003)

    Google Scholar 

  65. A. Kallenbach et al., Optimized tokamak power exhaust with double radiative feedback in ASDEX Upgrade. Nucl. Fusion 52, 122003 (2012)

    Article  ADS  Google Scholar 

  66. T. Oikawa et al., Development of plasma stored energy feedback control and its application to high performance discharges on JT-60U. Fusion Eng. Des. 70, 175 (2004)

    Article  Google Scholar 

  67. T.C. Luce et al., Long pulse high performance discharges in the DIII-D tokamak. Nucl. Fusion 41, 1585 (2001)

    Article  ADS  Google Scholar 

  68. A.W. Morris, Feedback stabilization of disruption precursors in a tokamak. Phys. Rev. Lett. 64, 1254–1257 (1990)

    Article  ADS  Google Scholar 

  69. B. Esposito et al., Disruption avoidance in the Frascati Tokamak Upgrade by means of magnetohydrodynamic mode stabilisation using electron-cyclotron resonance heating. Phys. Rev. Lett. 100, 045006 (2008)

    Article  ADS  Google Scholar 

  70. B. Esposito et al., Avoidance of disruptions at high βN in ASDEX Upgrade with off-axis ECRH. Nucl. Fusion 51, 083051 (2011)

    Article  ADS  Google Scholar 

  71. K. Hoshino et al., Avoidance of qa = 3 disruption by electron-cyclotron heating in the JFT-2 M tokamak. Phys. Rev. Lett. 69, 2208 (1992)

    Article  ADS  Google Scholar 

  72. M. Sugihara et al., Disruption impacts and their mitigation target values for ITER operation and machine protection, in Proceedings of the 24th International Conference on Fusion Energy, San Diego, 2012 (IAEA, Vienna, 2012). Paper ITR/P1-14

    Google Scholar 

  73. G. Pautasso et al., Disruption studies in ASDEX Upgrade in view of ITER. Plasma Phys. Control. Fusion 51, 124056 (2009)

    Article  ADS  Google Scholar 

  74. M. Lehnen et al., Disruption mitigation by massive gas injection in JET. Nucl. Fusion 51, 123010 (2011)

    Article  ADS  Google Scholar 

  75. S.A. Bozhenkov et al., Generation and suppression of runaway electrons in disruption mitigation experiments in TEXTOR. Plasma Phys. Control. Fusion 50, 105007 (2008)

    Article  ADS  Google Scholar 

  76. C. Reux et al., Experimental study of disruption mitigation using massive injection of noble gases on Tore Supra. Nucl. Fusion 50, 095006 (2010)

    Article  ADS  Google Scholar 

  77. S.A. Bozhenkov et al., Runaway electrons after massive gas injections in TEXTOR: importance of the gas mixing and of the resonant magnetic perturbations, in 35th EPS Conference on Plasma Physics Hersonissos, 9–13 June 2008 ECA, vol. 32D, (European Physical Society, 2008), p. P-1.079

    Google Scholar 

  78. A.J. Thornton et al., Plasma profile evolution during disruption mitigation via massive gas injection on MAST. Nucl. Fusion 52, 063018 (2012)

    Article  ADS  Google Scholar 

  79. E.M. Hollmann et al., Observation of q-profile dependence in noble gas injection radiative shutdown times in DIII-D. Phys. Plasmas 14, 012502 (2007)

    Article  ADS  Google Scholar 

  80. E.M. Hollmann et al., Measurements of injected impurity assimilation during massive gas injection experiments in DIII-D. Nucl. Fusion 48, 115007 (2008)

    Article  ADS  Google Scholar 

  81. C.R. Sovinec et al., Nonlinear magnetohydrodynamics simulation using high-order finite elements. J. Comput. Phys. 195, 355 (2004)

    Article  ADS  MATH  Google Scholar 

  82. V.A. Izzo et al., Magnetohydrodynamic simulations of massive gas injection into Alcator C-Mod and DIII-D plasmas. Phys. Plasmas 15, 056109 (2008)

    Article  ADS  Google Scholar 

  83. R. Granetz et al., Gas jet disruption mitigation studies on Alcator C-Mod. Nucl. Fusion 46, 1001–1008 (2006)

    Article  ADS  Google Scholar 

  84. A.J. Thornton et al., Characterization of disruption mitigation via massive gas injection on MAST. Plasma. Phys. Control. Fusion 54, 125007 (2012)

    Article  ADS  Google Scholar 

  85. M.L. Reinke et al., Toroidally resolved radiation dynamics during a gas jet mitigated disruption on Alcator C-Mod. Nucl. Fusion 48, 125004 (2008)

    Article  ADS  Google Scholar 

  86. G. Pautasso et al., Contribution of ASDEX Upgrade to disruption studies for ITER. Nucl. Fusion 51, 103009 (2011)

    Article  ADS  Google Scholar 

  87. R. Granetz et al., Disruption mitigation experiments with two gas jets on Alcator C-Mod, in Proceedings of the 24th International Conference on Fusion Energy, San Diego, 2012 (IAEA, Vienna, 2012). Paper EX/P8-09

    Google Scholar 

  88. V.A. Izzo et al., Impurity mixing and radiation asymmetry in massive gas injection simulations of DIII-D. Phys. Plasmas 20, 056107 (2013)

    Article  ADS  Google Scholar 

  89. G. Pautasso et al., Plasma shut-down with fast impurity puff on ASDEX Upgrade. Nucl. Fusion 47, 900–913 (2007)

    Article  ADS  Google Scholar 

  90. M.N. Rosenbluth, S.V. Putvisnki, Theory for avalanche of runaway electrons in tokamaks. Nucl. Fusion 37, 1355 (1997)

    Google Scholar 

  91. E.M. Hollmann et al., Experiments in DIII-D toward achieving rapid shutdown with runaway electron suppression. Phys. Plasmas 17, 056117 (2010)

    Article  ADS  Google Scholar 

  92. R.S. Granetz et al., Disruptions, halo currents and killer pellets in Alcator C-Mod, in Proceedings of the 16th International Conference on Fusion Energy, Montreal, 1996, vol. 1 (IAEA, Vienna, 1997), pp. 757–762

    Google Scholar 

  93. G. Pautasso et al., Use of impurity pellets to control energy dissipation during disruption. Nucl. Fusion 36, 1291 (1996)

    Article  ADS  Google Scholar 

  94. P.L. Taylor et al., Disruption mitigation studies in DIII-D. Phys. Plasmas 6, 1872 (1999)

    Article  ADS  Google Scholar 

  95. R. Yoshino et al., Fast plasma shutdown by killer pellet injection in JT-60U with reduced heat flux on the divertor plate and avoiding runaway generation. Plasma Phys. Control. Fusion 39, 313 (1997)

    Article  ADS  Google Scholar 

  96. N. Commaux et al., Demonstration of rapid shutdown using large shattered deuterium pellet injection in DIII-D. Nucl. Fusion 50, 112001 (2010)

    Article  ADS  Google Scholar 

  97. N. Commaux et al., Novel rapid shutdown strategies for runaway electron suppression in DIII-D. Nucl. Fusion 51, 103001 (2011)

    Article  ADS  Google Scholar 

  98. R. Yoshino et al., Generation and termination of runaway electrons at major disruptions in JT-60U. Nucl. Fusion 39, 151 (1999)

    Article  ADS  Google Scholar 

  99. E.M. Hollmann et al., Effect of applied toroidal electric field on the growth/decay of plateau-phase runaway electron currents in DIII-D. Nucl. Fusion 51, 103026 (2011)

    Article  ADS  Google Scholar 

  100. R. Yoshino et al., Runaway electrons in magnetic turbulence and runaway current termination in tokamak discharges. Nucl. Fusion 40, 1293 (2000)

    Article  ADS  Google Scholar 

  101. M. Lehnen et al., Suppression of runaway electrons by resonant magnetic perturbations in TEXTOR disruptions. Phys. Rev. Lett. 100, 255003 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim C. Hender .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hender, T.C. (2015). Disruptions. In: Igochine, V. (eds) Active Control of Magneto-hydrodynamic Instabilities in Hot Plasmas. Springer Series on Atomic, Optical, and Plasma Physics, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44222-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44222-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44221-0

  • Online ISBN: 978-3-662-44222-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics