Skip to main content

Energetic Particle Driven Modes

Control of Energetic Particle Driven Modes in Fusion Plasmas

  • Chapter
  • First Online:
Active Control of Magneto-hydrodynamic Instabilities in Hot Plasmas

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 83))

  • 1475 Accesses

Abstract

Twenty percent of the energy produced in a power station based around the self-sustaining thermonuclear fusion of deuterium and tritium ions will be released in the form of highly energetic (3.5 MeV) He2+ ions (alpha particles). In addition to this highly energetic population of ions that is expected to slow down on the rest of the bulk plasma, thereby heating it and sustaining the thermonuclear reaction, auxiliary heating systems that also produce energetic ions will be used to initiate and control the plasma burn. These different populations of fast particles have the potential to drive various instabilities in the plasma with possibly deleterious consequences for the reactor’s performance and the integrity of the plant. The extent to which these energetic particle driven modes can be diagnosed and controlled is considered in this Chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Wesson, Tokamaks (Clarendon Press, Oxford, 2010)

    Google Scholar 

  2. A. Fasoli et al., Nucl. Fusion 35, 1485 (1995)

    Article  ADS  Google Scholar 

  3. C.Z. Cheng, L. Chen, M.S. Chance, Ann. Phys. 161, 21 (1985)

    Article  ADS  Google Scholar 

  4. B.N. Breizman, S.E. Sharapov, Plasma Phys. Control. Fusion 53, 054001 (2011)

    Article  ADS  Google Scholar 

  5. H.L. Berk, B.N. Breizman, H. Ye, Phys. Fluids B 5, 1506 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  6. S.D. Pinches et al., Comput. Phys. Commun. 111, 133 (1998)

    Article  ADS  MATH  Google Scholar 

  7. D.F.H. Start et al., Nucl. Fusion 39, 321 (1999)

    Article  ADS  Google Scholar 

  8. L.-G., Eriksson et al., Nucl. Fusion 39, 337

    Google Scholar 

  9. J.-M. Noterdaeme et al., Fus. Sci. Tech. 53, 1103 (2008)

    Google Scholar 

  10. S.E. Sharapov et al., Nucl. Fusion 39, 373 (1999)

    Article  ADS  Google Scholar 

  11. M. Keilhacker et al., Nucl. Fusion 39, 209 (1999)

    Article  ADS  Google Scholar 

  12. M.J. Mantsinen et al., Phys. Rev. Lett. 88, 105002 (2002)

    Article  ADS  Google Scholar 

  13. G. Duesling et al., Fusion Technol. 11, 163 (1987)

    Google Scholar 

  14. S.E. Sharapov et al., Fusion Sci. Technol. 53, 989 (2008)

    Google Scholar 

  15. A. Fasoli et al., Nucl. Fusion 47, S1 (2007)

    Article  Google Scholar 

  16. S.D. Pinches, PhD Thesis (University of Nottingham, 1996)

    Google Scholar 

  17. R. Mett, S.M. Mahajan, Phys. Fluids B4, 2885 (1992)

    Article  ADS  Google Scholar 

  18. B.N. Breizman et al., Phys. Plasmas 10, 3649 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  19. A. Fasoli et al., Plasma Phys. Control. Fusion 52, 075015 (2010)

    Article  ADS  Google Scholar 

  20. B.N. Breizman et al., Phys. Plasmas 4, 1559 (1997)

    Article  ADS  Google Scholar 

  21. A. Fasoli et al., Phys. Rev. Lett. 81, 5564 (1998)

    Article  ADS  Google Scholar 

  22. R.F. Heeter et al., Phys. Rev. Lett. 85, 3177 (2000)

    Article  ADS  Google Scholar 

  23. S.D. Pinches et al., Plasma Phys. Control. Fusion 46, S55 (2004)

    Google Scholar 

  24. M.P. Gryaznevich, S.E. Sharapov, Nucl. Fusion 46, S942 (2006)

    Article  ADS  Google Scholar 

  25. M.K. Lilley, B.N. Breizman, S.E. Sharapov, Phys. Rev. Lett. 102, 195003 (2009)

    Article  ADS  Google Scholar 

  26. H.L. Berk, B.N. Breizman, M.S. Pekker, Phys. Rev. Lett. 76, 12567 (1996)

    Article  Google Scholar 

  27. M.K. Lilley, B.N. Breizman, S.E. Sharapov, Phys. Plasmas 17, 092305 (2010)

    Article  ADS  Google Scholar 

  28. B.N. Breizman, Nucl. Fusion 50, 084014 (2010)

    Article  ADS  Google Scholar 

  29. M.K. Lilley, B.N. Breizman, Nucl. Fusion 52, 094002 (2010)

    Article  ADS  Google Scholar 

  30. W.W. Heidbrink et al., Nucl. Fusion 53, 093006 (2013)

    Article  ADS  Google Scholar 

  31. Progress in the ITER Physics Basis, Nucl. Fusion 47, S1 (2007)

    Article  Google Scholar 

Download references

Acknowledgment

This work was part-funded by the RCUK Energy Programme [grant number EP/I501045] and by the European Union’s Horizon 2020 research and innovation programme. The views and opinions expressed herein do not necessarily reflect those of the European Commission or of the ITER Organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon D. Pinches .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pinches, S.D., Sharapov, S.E. (2015). Energetic Particle Driven Modes. In: Igochine, V. (eds) Active Control of Magneto-hydrodynamic Instabilities in Hot Plasmas. Springer Series on Atomic, Optical, and Plasma Physics, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44222-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44222-7_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44221-0

  • Online ISBN: 978-3-662-44222-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics