Skip to main content

Generalisation Enhancement via Input Space Transformation: A GP Approach

  • Conference paper
Genetic Programming (EuroGP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8599))

Included in the following conference series:

Abstract

This paper proposes a new approach to improve generalisation of standard regression techniques when there are hundreds or thousands of input variables. The input space X is composed of observational data of the form (x i , y(x i )), iā€‰=ā€‰1... n where each x i denotes a k-dimensional input vector of design variables and y is the response. Genetic Programming (GP) is used to transform the original input space X into a new input space Zā€‰=ā€‰(z i , y(z i )) that has smaller input vector and is easier to be mapped into its corresponding responses. GP is designed to evolve a function that receives the original input vector from each x i in the original input space as input and return a new vector z i as an output. Each element in the newly evolved z i vector is generated from an evolved mathematical formula that extracts statistical features from the original input space. To achieve this, we designed GP trees to produce multiple outputs. Empirical evaluation of 20 different problems revealed that the new approach is able to significantly reduce the dimensionality of the original input space and improve the performance of standard approximation models such as Kriging, Radial Basis Functions Networks, and Linear Regression, and GP (as a regression techniques). In addition, results demonstrate that the new approach is better than standard dimensionality reduction techniques such as Principle Component Analysis (PCA). Moreover, the results show that the proposed approach is able to improve the performance of standard Linear Regression and make it competitive to other stochastic regression techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop, C.M., Nasrabadi, N.M.: Pattern recognition and machine learning, vol.Ā 1. Springer, New York (2006)

    MATHĀ  Google ScholarĀ 

  2. EstƩbanez, C., Aler, R., Valls, J.M.: Genetic programming based data projections for classification tasks. World Academy of Science, Engineering and Technology (2005)

    Google ScholarĀ 

  3. Forrester, A., SĆ³bester, A., Keane, A.: Engineering design via surrogate modelling: a practical guide. John Wiley & Sons (2008)

    Google ScholarĀ 

  4. GarcĆ­a, S., Herrera, F.: An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons. Journal of Machine Learning ResearchĀ 9(66), 2677ā€“2694 (2008)

    MATHĀ  Google ScholarĀ 

  5. Icke, I., Bongard, J.: Improving genetic programming based symbolic regression using deterministic machine learning. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 1763ā€“1770 (2013)

    Google ScholarĀ 

  6. Kattan, A., Galvan, E.: Evolving radial basis function networks via gp for estimating fitness values using surrogate models. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1ā€“7 (2012)

    Google ScholarĀ 

  7. Koza, J.R.: Genetic Programming: On the programming of computers by means of natural selection, vol.Ā 1. MIT Press (1992)

    Google ScholarĀ 

  8. McConaghy, T.: Latent variable symbolic regression for high-dimensional inputs. In: Genetic Programming Theory and Practice VII, pp. 103ā€“118. Springer (2010)

    Google ScholarĀ 

  9. McConaghy, T.: Ffx: Fast, scalable, deterministic symbolic regression technology. In: Genetic Programming Theory and Practice IX, pp. 235ā€“260. Springer (2011)

    Google ScholarĀ 

  10. Molga, M., Smutnick, C.: Test functions for optimization needs (2005)

    Google ScholarĀ 

  11. Poli, R., Langdon, W.W.B., McPhee, N.F., Koza, J.R.: A field guide to genetic programming. Lulu.com (2008)

    Google ScholarĀ 

  12. Smits, G., Kordon, A., Vladislavleva, K., Jordaan, E., Kotanchek, M.: Variable selection in industrial datasets using pareto genetic programming. In: Yu, T., Riolo, R.L., Worzel, B. (eds.) Genetic Programming Theory and Practice III, Genetic Programming, May 12-14, vol.Ā 9, ch. 6, pp. 79ā€“92. Springer, Ann Arbor (2005)

    Google ScholarĀ 

  13. Sobester, A., Nair, P., Keane, A.: Evolving intervening variables for response surface approximations. In: Proceedings of the 10th AIAA/ISSMO Multi-disciplinary Analysis and Optimization Conference, pp. 1ā€“12. American Institute of Aeronautics and Astronautics (2004), http://eprints.soton.ac.uk/22962/ , aIAA 2004-4379

  14. Zhang, Y., Zhang, M.: A multiple-output program tree structure in genetic programming. In: Mckay, R.I., Cho, S.B. (eds.) Proceedings of the Second Asian-Pacific Workshop on Genetic Programming, Cairns, Australia, December 6-7, p. 12 (2004), http://www.mcs.vuw.ac.nz/~mengjie/papers/yun-meng-apwgp04.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kattan, A., Kampouridis, M., Agapitos, A. (2014). Generalisation Enhancement via Input Space Transformation: A GP Approach. In: Nicolau, M., et al. Genetic Programming. EuroGP 2014. Lecture Notes in Computer Science, vol 8599. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44303-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44303-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44302-6

  • Online ISBN: 978-3-662-44303-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics