Skip to main content

Power Converters for Small- to Large-Scale Photovoltaic Power Plants

  • Chapter
  • First Online:
Power Converters for Medium Voltage Networks

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This chapter presents an extensive literature survey on various different aspects of medium-voltage (MV) converter development for step-up-transformer-less direct grid integration of photovoltaic (PV) power plants. The main objective was to show how power electronic converter topologies, power electronic devices, and control complexities have affected the development of the MV converter and how to make an excellent choice of the converter topology for step-up-transformer-less grid integration through the MV converter. Besides the traditional system, which requires a step-up transformer to connect the renewable power plants to the grids, other recently proposed converter topologies for step-up-transformer-less direct grid interconnection are also introduced in detail with the aim of presenting a complete picture of power converter topologies for small- to large-scale PV power plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Earth policy institute Climate, energy and transportation, world cumulative wind turbine installations [online]. Available at: http://www.earth-policy.org. Accessed on 25 Mar 2013

  2. Islam MR, Guo YG, Zhu JG (2012) 11-kV series-connected H-bridge multilevel converter for direct grid connection of renewable energy systems. J Int Conf Elec Mach Syst 1(2):211–219

    Google Scholar 

  3. Islam MR, Guo YG, Zhu JG (2014) A multilevel medium-voltage inverter for step-up-transformer-less grid connection of photovoltaic power plants. IEEE J Photovoltaics 4(3):881–889

    Article  Google Scholar 

  4. Islam MR, Guo YG, Zhu JG (2014) A high-frequency link multilevel cascaded medium-voltage converter for direct grid integration of renewable energy systems. IEEE Trans Power Electron 29(8):4167–4182

    Article  Google Scholar 

  5. Islam MR, Guo YG, Lin ZW, Zhu JG (2014) An amorphous alloy core medium frequency magnetic-link for medium voltage photovoltaic inverters. J Appl Phys 115(17):17E710-1–17E710-3

    Google Scholar 

  6. Sharma VK, Colangelo A, Spagna G (1995) Photovoltaic technology: basic concepts, sizing of a standalone photovoltaic system for domestic applications and preliminary economic analysis. Energy Convers Manage 36(3):161–174

    Article  Google Scholar 

  7. Santos JL, Antunes F, Chehab A, Cruz C (2006) A maximum power point tracker for PV systems using a high performance boost converter. Sol Energy 80(7):772–778

    Article  Google Scholar 

  8. Hua C, Shen C (1998) Study of maximum power tracking techniques and control of DC/DC converters for photovoltaic power system. In: 29th annual IEEE power electronics specialists conference, Fukuoka, Japan, 17–22 May 1998, pp 86–93

    Google Scholar 

  9. Jaboori MG, Saied MM, Hanafy AAR (1991) A contribution to the simulation and design optimization of photovoltaic systems. IEEE Trans Energy Conversion 6(3):401–406

    Article  Google Scholar 

  10. Bose BK, Szczesny PM, Steigerwald RL (1985) Microcomputer control of a residential photovoltaic power conditioning system. IEEE Trans Ind Appl 21(5):1182–1191

    Article  Google Scholar 

  11. Islam MR, Islam MR, Beg MRA (2008) Renewable energy resources and technologies practice in Bangladesh. Renew Sustain Energy Rev 12(2):299–343

    Article  Google Scholar 

  12. Islam MR, Guo YG, Zhu JG, Jin J (2011) Design and fabrication of a microcontroller based maximum power point tracker for renewable energy systems. J Appl Supercond Electromagnet 2(1):17–23

    Google Scholar 

  13. Islam MR, Guo YG, Zhu JG, Rabbani MG (2010) Simulation of PV array characteristics and fabrication of microcontroller based MPPT. In: 6th international conference on electrical and computer engineering (ICECE), Dhaka, Bangladesh, 18–20 Dec, pp 155–158

    Google Scholar 

  14. Sugimoto H, Dong H (1997) A new scheme for maximum photovoltaic power tracking controls. In: Power conversion conference, Nagaoka, Japan, 3–6 Aug 1997, pp 691–696

    Google Scholar 

  15. Ogura K, Nishida T, Hiraki E, Nakaoka M, Nagai S (2004) Time-sharing boost chopper cascaded dual mode single-phase sinewave inverter for solar photovoltaic power generation system. In: IEEE 35th annual power electronics specialists conference, Aachen, Germany, 20–25 June 2004, pp 4763–4767

    Google Scholar 

  16. Young-Ho K, Jun-Gu K, Young-Hyok J, Chung-Yuen W, Yong-Chae J (2010) Photovoltaic parallel resonant DC-link soft switching inverter using hysteresis current control. In: Twenty-fifth annual IEEE applied power electronics conference and exposition, Palm Springs, Canada, 21–25 Feb 2010, pp 2275–2280

    Google Scholar 

  17. Nema S, Nema RK, Agnihotri G (2011) Inverter topologies and control structure in photovoltaic applications: a review. J Renew Sustain Energy 3(1):012701-1–012701-23

    Google Scholar 

  18. Patrao I, Figueres E, Espin FG, Garcera G (2011) Transformerless topologies for grid-connected single-phase photovoltaic inverters. Renew Sustain Energy Rev 15(7):3423–3431

    Article  Google Scholar 

  19. Rahman MF, Zhong L (1997) A new, transformerless, photovoltaic array to utility grid interconnection. In: 1997 international conference on power electronics and drive systems, Singapore, 26–29 May 1997, pp 139–143

    Google Scholar 

  20. SMA Solar Technology AG. Sunny Boy 5000TL multi-string inverter [online]. Available at: http://www.sma.de. Accessed on 25 Feb 2013

  21. Agheb E, Bahmani MA, Hoidalen HK, Thiringer T (2012) Core loss behavior in high frequency high power transformers-II: arbitrary excitation. J Renew Sustain Energy 4(3):033113-1–033113-11

    Google Scholar 

  22. Lu J, Stegen S, Butler D (2010) High frequency and high power density transformers for DC/DC converter used in solar PV system. In: 2010 2nd IEEE international symposium on power electronics for distributed generation systems, Hefei, China, 16–18 June 2010, pp 481–484

    Google Scholar 

  23. Lu J, Butler D (2011) High frequency transformers for DC/DC converter used in solar PV system. J Energy Power Eng 5:536–541

    Google Scholar 

  24. Lu J, Dawson F (2011) Characteristics for high frequency planar transformer with a novel comb-shaped shield. IEEE Trans Magn 47(10):4493–4496

    Article  Google Scholar 

  25. Panchal C, Lu J (2011) High frequency planar transformer for universal contact-less battery charging platform. IEEE Trans Magn 47(10):2764–2767

    Article  Google Scholar 

  26. Kjaer SB, Pedersen JK, Blaabjerg F (2005) A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Trans Ind Appl 41(5):1292–1306

    Article  Google Scholar 

  27. Lu DDC, Agelidis VG (2009) Photovoltaic-battery-powered DC bus system for common portable electronic devices. IEEE Trans Power Electron 24(3):849–855

    Article  Google Scholar 

  28. Liang TJ, Kuo YC, Chen JF (2001) Single-stage photovoltaic energy conversion system. IEE Proc Electric Power Appl 148(4):339–344

    Article  Google Scholar 

  29. Chen Y, Smedley KM (2004) A cost-effective single-stage inverter with maximum power point tracking. IEEE Trans Power Electron 19(5):1289–1294

    Article  Google Scholar 

  30. Gonzalez R, Gubia E, Lopez J, Marroyo L (2008) Transformerless single-phase multilevel-based photovoltaic inverter. IEEE Trans Ind Electron 55(7):2694–2702

    Article  Google Scholar 

  31. Cavalcanti MC, Farias AM, Olivetra KC, Neves FAS, Afonso J (2012) Eliminating leakage currents in neutral point clamped inverters for photovoltaic systems. IEEE Trans Ind Electron 59(1):435–443

    Article  Google Scholar 

  32. Junior LG, Brito MAGD, Sampaio LP, Canesin CA (2011) Single stage converters for low power stand-alone and grid-connected PV systems. In: 2011 IEEE international symposium on industrial electronics, Gdansk, Poland, 27–30 June 2011, pp 1112–1117

    Google Scholar 

  33. Prasad BS, Jain S, Agarwal V (2008) Universal single-stage grid-connected inverter. IEEE Trans Energy Conversion 23(1):128–137

    Article  Google Scholar 

  34. Wang C (2004) A novel single-stage full-bridge buck-boost inverter. IEEE Trans Power Electron 19(1):150–159

    Article  Google Scholar 

  35. Patel H, Agarwal V (2009) A single-stage single-phase transformer-less doubly grounded grid-connected PV interface. IEEE Trans Energy Conversion 24(1):93–101

    Article  Google Scholar 

  36. Meneses D, Blaabjerg F, García O, Cobos JA (2013) Review and comparison of step-up transformerless topologies for photovoltaic AC-module application. IEEE Trans Power Electron 28(6):2649–2663

    Article  Google Scholar 

  37. ASEA Brown Boveri (ABB). Solar photovoltaic string inverter [online]. Available at: http://www.abb.com. Accessed on 13 May 2013

  38. SIEMENS. SINVERT PVM operating instruction 07/2010 [online]. Available at: http://www.siemens.com/. Accessed on 13 April 2014

  39. Du Y, Lu DDC (2010) Analysis of a battery-integrated boost converter for module-based series connected photovoltaic system. In: 2010 international power electronics conference, Sapporo, Japan, 21–24 June 2010, pp 694–698

    Google Scholar 

  40. Du Y, Lu DDC (2011) Battery-integrated boost converter utilizing distributed MPPT configuration for photovoltaic systems. Sol Energy 85(9):1992–2002

    Article  Google Scholar 

  41. ASEA Brown Boveri (ABB). Solar photovoltaic central inverter [online]. Available at: http://www.abb.com. Accessed on 10 Mar 2014)

  42. Islam MR, Guo YG, Zhu JG (2014) A review of offshore wind turbine nacelle: technical challenges, and research and developmental trends. Renew Sustain Energy Rev 33:161–176

    Article  Google Scholar 

  43. SIEMENS. SINVERT PVS solar photovoltaic inverter [online]. Available at: http://www.siemens.com/. Accessed on 13 Feb 2014)

  44. ASEA Brown Boveri (ABB). GEAFOL transformer [online]. Available at: http://www.abb.com. Accessed on 02 July 2013)

  45. Islam MR, Guo YG, Zhu JG (2011) Performance and cost comparison of NPC, FC and SCHB multilevel converter topologies for high-voltage applications. In: 2011 international conference on electrical machines and systems, Beijing, China, 20–23 Aug 2011, pp 1–6

    Google Scholar 

  46. Islam MR, Guo YG, Zhu JG, Dorrell (2011) Design and comparison of 11 kV multilevel voltage source converters for local grid based renewable energy systems. In: Proceedings of the 37th annual conference on IEEE industrial electronics society, Melbourne, Australia,7–10 Nov 2011, pp 3596–3601

    Google Scholar 

  47. Islam MR, Guo YG, Zhu JG (2011) H-bridge multilevel voltage source converter for direct grid connection of renewable energy systems. In: 2011 IEEE PES innovative smart grid technologies Asia (ISGT), Perth, Australia, 13–16 Nov 2011, pp 1–7

    Google Scholar 

  48. Islam MR, Guo YG, Zhu JG (2013) A medium-frequency transformer with multiple secondary windings for medium-voltage converter based wind turbine generating systems. J Appl Phys 113(17):17A324-1–17A324-3

    Google Scholar 

  49. Sun D, Ge B, Peng FZ, Haitham AR, Bi D, Liu Y (2012) A new grid-connected PV system based on cascaded H-bridge quasi-Z source inverter. In: 2012 IEEE international symposium on industrial electronics, Hangzhou, China, 28–31 May 2012, pp 951–956

    Google Scholar 

  50. Choi H, Zhao W, Ciobotaru M, Agelidis VG (2012) Large-scale PV system based on the multiphase isolated DC/DC converter. In: 3rd IEEE international symposium on power electronics for distributed generation systems, Aalborg, Denmark, 25–28 June 2012, pp 801–807

    Google Scholar 

  51. Zhao W, Choi H, Konstantinou G, Ciobotaru M, Agelidis VG (2012) Cascaded H-bridge multilevel converter for large-scale PV grid-integration with isolated DC-DC stage. In: 3rd IEEE international symposium on power electronics for distributed generation systems, Aalborg, Denmark, 25–28 June 2012, pp 849–856

    Google Scholar 

  52. Kouro S, Fuentes C, Perez M, Rodriguez J (2012) Single DC-link cascaded H-bridge multilevel multistring photovoltaic energy conversion system with inherent balanced operation. In: 38th annual conference on IEEE industrial electronics society, Montreal, QC, Canada, 25–28 Oct 2012, pp 4998–5005

    Google Scholar 

  53. Rivera S, Wu B, Kouro S, Wang H, Zhang D (2012) Cascaded H-bridge multilevel converter topology and three-phase balance control for large scale photovoltaic systems. In: 3rd IEEE international symposium on power electronics for distributed generation systems, Aalborg, Denmark, 25–28 June 2012, pp 690–697

    Google Scholar 

  54. Islam MR, Lei G, Guo YG, Zhu JG (2014) Optimal design of high-frequency magnetic-links for power converters used in grid connected renewable energy systems. IEEE Trans Magn. doi:10.1109/TMAG.2014.2329939

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Rabiul Islam .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Islam, M.R., Guo, Y., Zhu, J. (2014). Power Converters for Small- to Large-Scale Photovoltaic Power Plants. In: Power Converters for Medium Voltage Networks. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44529-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44529-7_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44528-0

  • Online ISBN: 978-3-662-44529-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics