Skip to main content

Find Dense Correspondence between High Resolution Non-rigid 3D Human Faces

  • Conference paper
Bio-Inspired Computing - Theories and Applications

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 472))

Abstract

It’s a very complex problem to achieve dense correspondence between high resolution 3D human faces. Solving the problem can contribute to a variety of computer vision tasks. This paper proposed an automatic method to find dense correspondence between different high resolution non-rigid 3D human faces. The main idea of this method is to use the correspondent facial feature points to generate Möbius transformations and using these Möbius transformations to achieve sparse correspondence between 3D faces. The texture and shape information of 3D face are used to locate the facial feature points. TPS (Thin-Plate Spline) transformation is used to represent the deformation of 3D faces, the TPS control points are selected from the sparse correspondence set. After performing TPS warping, for every vertex of the warped reference 3D face, we project them to every triangle face of the sample 3D face and use the closest projections to define the new mesh vertices of the sample 3D face. The sample 3D face with new mesh shares the same connectivity with the reference 3D face, thus the dense correspondence between the reference 3D face and the sample 3D face with new mesh is achieved. The experiments on BJUT-3D face databases show that our method achieves better performance than existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 187–194. ACM Press, Los Angeles (1999)

    Google Scholar 

  2. Anguelov, D., Srinivasan, P., Pang, H.-C., Koller, D., Thrun, S., Davis, J.: The Correlated Correspondence Algorithm for Unsupervised Registration of Nonrigid Surfaces. In: 18th Annual Conference on Neural Information Processing Systems, pp. 33–40. NIPS Foundation, Montreal (2004)

    Google Scholar 

  3. Vlasic, D., Brand, M., Pfister, H., Popovic, J.: Face transfer with multilinear models. ACM Transactions on Graphics 24, 426–433 (2005)

    Article  Google Scholar 

  4. Irfanoglu, M.O., Gokberk, B., Akarun, L.: 3D shape-based face recognition using automatically registered facial surfaces. In: 17th International Conference on Pattern Recognition, pp. 183–186. IEEE Press, Cambridge (2004)

    Google Scholar 

  5. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3D shapes. In: 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 203–212. ACM Press, New York (2001)

    Google Scholar 

  6. Pan, G., Zhang, X., Wang, Y., Hu, Z., Zheng, X., Wu, Z.: Establishing Point Correspondence of 3D Faces Via Sparse Facial Deformable Model. IEEE Transactions on Image Processing 22, 4170–4181 (2013)

    Article  MathSciNet  Google Scholar 

  7. Hutton, T.J., Buxton, B.F., Hammond, P.: Dense surface point distribution models of the human face. In: IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 153–160. IEEE Press, Kauai (2001)

    Google Scholar 

  8. Guo, J., Mei, X., Tang, K.: Automatic landmark annotation and dense correspondence registration for 3D human facial images. BMC Bioinformatics 14, 232–243 (2013)

    Article  Google Scholar 

  9. Hu, Y., Zhou, M., Wu, Z.: An Automatic Dense Point Registration Method for 3D Face Animation. In: 2nd International Congress on Image and Signal Processing, pp. 1–6. IEEE Press, Tianjin (2009)

    Google Scholar 

  10. Qin, W., Hu, Y., Sun, Y., Yin, B.: An Automatic Multi-sample 3D Face Registration Method Based on Thin Plate Spline and Deformable Model. In: 2012 IEEE International Conference on Multimedia and Expo Workshops, pp. 453–458. IEEE Press, Melbourne (2012)

    Chapter  Google Scholar 

  11. Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Robotics-DL tentative, pp. 586–606 (1992)

    Google Scholar 

  12. Weik, S.: Registration of 3-D partial surface models using luminance and depth information. In: International Conference on Recent Advances in 3-D Digital Imaging and Modeling, pp. 93–100. IEEE Press, Ottawa (1997)

    Google Scholar 

  13. Simon, D.A.: Fast and Accurate Shape-Based Registration. Carnegie Mellon University, Pittsburgh (1996)

    Google Scholar 

  14. Pulli, K.: Multiview registration for large data sets. In: Second International Conference on 3-D Digital Imaging and Modeling, pp. 160–168. IEEE Press, Ottawa (1999)

    Chapter  Google Scholar 

  15. Ikemoto, L., Gelfand, N., Levoy, M.: A hierarchical method for aligning warped meshes. In: Fourth International Conference on 3-D Digital Imaging and Modeling, pp. 434–441. IEEE Press, Banff (2003)

    Google Scholar 

  16. Bookstein, F.L.: Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Transactions on pattern analysis and machine intelligence 11, 567–585 (1989)

    Article  MATH  Google Scholar 

  17. Chui, H.L., Rangarajan, A.: A new point matching algorithm for non-rigid registration. Computer Vision and Image Understanding 89, 114–141 (2003)

    Article  MATH  Google Scholar 

  18. Chui, H., Rambo, J., Duncan, J.S., Schultz, R.T., Rangarajan, A.: Registration of cortical anatomical structures via robust 3D point matching. In: Kuba, A., Sámal, M., Todd-Pokropek, A. (eds.) IPMI 1999. LNCS, vol. 1613, pp. 168–181. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  19. Gold, S., Rangarajan, A., Lu, C.-P., Pappu, S., Mjolsness, E.: New algorithms for 2d and 3d point matching: pose estimation and correspondence. Pattern Recognition 31, 1019–1031 (1998)

    Article  Google Scholar 

  20. Rangarajan, A., Chui, H., Bookstein, F.L.: The softassign procrustes matching algorithm. In: 15th International Conference on Information Processing in Medical Imaging, pp. 29–42. Springer Press, Poultney (1997)

    Chapter  Google Scholar 

  21. Lipman, Y., Funkhouser, T.: Möbius voting for surface correspondence. ACM Transactions on Graphics 28, 72 (2009)

    Article  Google Scholar 

  22. Kim, V.G., Lipman, Y., Chen, X., Funkhouser, T.: Möbius transformations for global intrinsic symmetry analysis. Computer Graphics Forum 29, 1689–1700 (2010)

    Article  Google Scholar 

  23. Peyre, G., Cohen, L.D.: Geodesic remeshing using front propagation. Geodesic remeshing using front propagation. International Journal of Computer Vision. 69, 145–156 (2010)

    Article  Google Scholar 

  24. Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2879–2886. IEEE Press, Providence (2012)

    Google Scholar 

  25. Dorai, C., Jain, A.K.: COSMOS-A representation scheme for 3D free-form objects. IEEE Transactions on pattern analysis and machine intelligence 19, 1115–1130 (1997)

    Article  Google Scholar 

  26. Erdogmus, N., Dugelay, J.-L.: Automatic extraction of facial interest points based on 2D and 3D data. In: Conference on the Three-Dimensional Imaging, Interaction, and Measurement, vol. 7864, p. 23. SPIE Press, San Francisco (2011)

    Google Scholar 

  27. Schneider, D.C., Eisert, P., Herder, J., Magnor, M., Grau, O.: Algorithms for automatic and robust registration of 3d head scans. Journal of Virtual Reality and Broadcasting 7(7) (2010)

    Google Scholar 

  28. Hutton, T.J., Buxton, B.F., Hammond, P., Potts, H.W.: Estimating average growth trajectories in shape-space using kernel smoothing. IEEE Transactions on Medical Imaging 22, 747–753 (2003)

    Article  Google Scholar 

  29. Tech, Multimedia.: The BJUT-3D Large-Scale Chinese Face Database. Technical report, Graphics Lab, Beijing University of Technology (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, J., Zhang, Q., Tang, C. (2014). Find Dense Correspondence between High Resolution Non-rigid 3D Human Faces. In: Pan, L., Păun, G., Pérez-Jiménez, M.J., Song, T. (eds) Bio-Inspired Computing - Theories and Applications. Communications in Computer and Information Science, vol 472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45049-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45049-9_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45048-2

  • Online ISBN: 978-3-662-45049-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics