Skip to main content

Meeting Educational Objectives in the Affective and Cognitive Domains: Personal and Social Constructivist Perspectives on Enjoyment, Motivation and Learning Chemistry

  • Chapter
  • First Online:
Affective Dimensions in Chemistry Education

Abstract

Constructivist ideas about learning have been highly influential in science education over several decades. Debate continues between some educational scholars about the value of constructivism as the basis for informing effective instruction. However, in teaching the sciences, some core constructivist ideas have largely been accepted and indeed commonly even become taken for granted. Most commonly, constructivist accounts focus on learning, either as an individual act of knowledge construction or as participation within a community of practice, and have tended to relate to issues of knowledge and/or authenticity that reflect a cognitive focus. This chapter revisits constructivist ideas about learning to ask what they can offer when considering educational objectives in the affective domain. It is argued that guidance that largely derives from cognitive perspectives on learning often also makes good sense when our focus is on affect. It is suggested that the traditional emphasis of research within the constructivist research programme on what is learnt should be supplemented by a simultaneous consideration of how learning activities are experienced by the students.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainley, M. (2006). Connecting with learning: motivation, affect and cognition in interest processes. Educational Psychology Review, 18(4), 391–405. doi:10.1007/s10648-006-9033-0.

    Article  Google Scholar 

  • Ausubel, D. P. (1968). Educational psychology: A cognitive view. New York: Holt, Rinehart & Winston.

    Google Scholar 

  • Ausubel, D. P. (2000). The acquisition and retention of knowledge: A cognitive view. Dordrecht: Kluwer.

    Book  Google Scholar 

  • Baddeley, A. D. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829–839.

    Article  CAS  Google Scholar 

  • Bektas, O., & Taber, K. S. (2009). Can science pedagogy in English schools inform educational reform in Turkey? Exploring the extent of constructivist teaching in a curriculum context informed by constructivist principles. Journal of Turkish Science Education, 6(3), 66–80.

    Google Scholar 

  • Bickhard, M. H. (1998). Constructivism and relativism: A shoppers guide. In M. R. Matthews (Ed.), Constructivism in science education: A philosophical examination (pp. 99–112). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Bloom, B. S. (1968). The cognitive domain. In L. H. Clark (Ed.), Strategies and tactics in secondary school teaching: A book of readings (pp. 49–55). London: Macmillan.

    Google Scholar 

  • Bloom, B. S. (1972). Innocence in education. The School Review, 80(3), 333–352. doi:10.2307/1084408.

    Article  Google Scholar 

  • Bodner, G. M. (1986). Constructivism: A theory of knowledge. Journal of Chemical Education, 63(10), 873–878.

    Article  CAS  Google Scholar 

  • Bodner, G. M., Klobuchar, M., Geelan, D. (2001). The many forms of constructivism. Journal of Chemical Education 78(Online Symposium: Piaget, Constructivism, and Beyond):1107.

    Google Scholar 

  • Brock, R. (2006). Intuition and integration: Insights from intuitive students (M.Phil. thesis, Faculty of Education. University of Cambridge, Cambridge).

    Google Scholar 

  • Chalmers, A. F. (1982). What is this thing called science? (2nd ed.). Milton Keynes: Open University Press.

    Google Scholar 

  • Cole, R., Becker, N., Towns, M., Sweeney, G., Wawro, M., & Rasmussen, C. (2012). Adapting a methodology from mathematics education research to chemistry education research: documenting collective activity. International Journal of Science and Mathematics Education, 10(1), 193–211. doi:10.1007/s10763-011-9284-1.

    Article  Google Scholar 

  • Coll, R. K., & Taylor, T. G. N. (2001). Using constructivism to inform chemistry pedagogy. Chemistry Education: Research & Practice in Europe, 2(3), 215–226.

    Google Scholar 

  • Collins, H. (2010). Tacit and explicit knowledge. Chicago: The University of Chicago Press.

    Book  Google Scholar 

  • Cornwall, M. (1987). The social bases of religion: A study of factors influencing religious belief and commitment. Review of Religious Research, 29(1), 44–56. doi:10.2307/3511951.

    Article  Google Scholar 

  • Csikszentmihalyi, M. (1997). Creativity: Flow and the psychology of discovery and invention. New York: HarperPerennial.

    Google Scholar 

  • Driver, R. (1983). The pupil as scientist? Milton Keynes: Open University Press.

    Google Scholar 

  • Driver, R., Asoko, H., Leach, J., Mortimer, E., & Scott, P. (1994). Constructing scientific knowledge in the classroom. Educational Researcher, 23(7), 5–12.

    Article  Google Scholar 

  • Driver, R., & Easley, J. (1978). Pupils and paradigms: A review of literature related to concept development in adolescent science students. Studies in Science Education, 5, 61–84.

    Article  Google Scholar 

  • Driver, R., & Erickson, G. (1983). Theories-in-action: Some theoretical and empirical issues in the study of students’ conceptual frameworks in science. Studies in Science Education, 10, 37–60.

    Article  Google Scholar 

  • Erduran, S., Simon, S., & Osborne, J. (2004). TAPping into argumentation: developments in the application of Toulmin’s argument pattern for studying science discourse. Science Education, 88(915–933).

    Google Scholar 

  • Fensham, P. J. (2004). Defining an identity: The evolution of science education as a field of research. Dordrecht: Kluwer.

    Book  Google Scholar 

  • Gilbert, J. K., Osborne, R. J., & Fensham, P. J. (1982). Children’s science and its consequences for teaching. Science Education, 66(4), 623–633.

    Article  Google Scholar 

  • Gilbert, J. K., & Watts, D. M. (1983). Concepts, misconceptions and alternative conceptions: Changing perspectives in science education. Studies in Science Education, 10(1), 61–98.

    Article  Google Scholar 

  • Gould, S. J. (1992). The mismeasure of man. London: Penguin.

    Google Scholar 

  • Grandy, R. E. (1998). Constructivisms and objectivity: Disentangling metaphysics from pedagogy. In M. R. Matthews (Ed.), Constructivism in science education: A philosophical examination (pp. 113–123). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Haidet, P., & Stein, H. F. (2006). The role of the student-teacher relationship in the formation of physicians. Journal of General Internal Medicine, 21(S1), S16–S20. doi:10.1111/j.1525-1497.2006.00304.x.

    Article  Google Scholar 

  • Hennessy, S. (1993). Situated cognition and cognitive apprenticeship: Implications for classroom learning. Studies in Science Education, 22, 1–41.

    Article  Google Scholar 

  • Herron, J. D., Cantu, L., Ward, R., & Srinivasan, V. (1977). Problems associated with concept analysis. Science Education, 61(2), 185–199.

    Article  Google Scholar 

  • Jong, T. (2010). Cognitive load theory, educational research, and instructional design: Some food for thought. Instructional Science, 38(2), 105–134. doi:10.1007/s11251-009-9110-0.

    Article  Google Scholar 

  • Karmiloff-Smith, A. (1996). Beyond modularity: A developmental perspective on cognitive science. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kelly, G. (1963). A theory of personality: The psychology of personal constructs. New York: W W Norton & Company.

    Google Scholar 

  • Kleine-Staarman, J., & Mercer, N. (2010). The guided construction of knowledge: Talk between teachers and students. In K. Littleton, C. Wood, & J. K. Kleine-Staarman (Eds.), International handbook of research of psychology in education (pp. 75–104). Bingley: Emerald.

    Google Scholar 

  • Kohlberg, L., & Hersh, R. H. (1977). Moral development: A review of the theory. Theory Into Practice, 16(2), 53–59. doi:10.1080/00405847709542675.

    Article  Google Scholar 

  • Koltko-Rivera, M. E. (2006). Rediscovering the later version of Maslow’s hierarchy of needs: Self-transcendence and opportunities for theory, research, and unification. Review of General Psychology, 10(4), 302–317.

    Article  Google Scholar 

  • Krathwohl, D. R., Bloom, B. S., & Masia, B. B. (1968). The affective domain. In L. H. Clark (Ed.), Strategies and tactics in secondary school teaching: A book of readings (pp. 41–49). New York: The Macmillan Company.

    Google Scholar 

  • Kuhn, T. S. (1996). The structure of scientific revolutions (3rd ed.). Chicago: University of Chicago.

    Book  Google Scholar 

  • Kusurkar, R. A., Ten Cate, T. J., van Asperen, M., & Croiset, G. (2011). Motivation as an independent and a dependent variable in medical education: A review of the literature. Medical Teacher, 33(5), e242–e262. doi:10.3109/0142159X.2011.558539.

    Article  CAS  Google Scholar 

  • Lakoff, G., & Johnson, M. (1980). The metaphorical structure of the human conceptual system. Cognitive Science, 4(2), 195–208.

    Article  Google Scholar 

  • Lave, J., & Wenger, E. (1991). Situated cognition: Legitimate peripheral participation. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Lavigne, G. L., & Vallerand, R. J. (2010). The dynamic processes of influence between contextual and situational motivation: A test of the hierarchical model in a science education setting. Journal of Applied Social Psychology, 40(9), 2343–2359. doi:10.1111/j.1559-1816.2010.00661.x.

    Article  Google Scholar 

  • Leach, J., & Scott, P. (2002). Designing and evaluating science teaching sequences: An approach drawing upon the concept of learning demand and a social constructivist perspective on learning. Studies in Science Education, 38, 115–142.

    Article  Google Scholar 

  • Lewis, S. E., Shaw, J. L., Heitz, J. O., & Webster, G. H. (2009). Attitude counts: Self-concept and success in general chemistry. Journal of Chemical Education, 86(6), 744. doi:10.1021/ed086p744.

    Article  CAS  Google Scholar 

  • Liang, L. L., & Gabel, D. L. (2005). Effectiveness of a constructivist approach to science instruction for prospective elementary teachers. International Journal of Science Education, 27(10), 1143–1162. doi:10.1080/09500690500069442.

    Article  Google Scholar 

  • Losee, J. (1993). A historical introduction to the philosophy of science (3rd ed.). Oxford: Oxford University Press.

    Google Scholar 

  • Luria, A. R. (1976). Cognitive development: Its cultural and social foundations. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Lynch, D., & Trujillo, H. (2011). Motivational beliefs and learning strategies in organic chemistry. International Journal of Science and Mathematics Education, 9(6), 1351–1365. doi:10.1007/s10763-010-9264-x.

    Article  Google Scholar 

  • Marsh, H. W., & Martin, A. J. (2011). Academic self-concept and academic achievement: Relations and causal ordering. British Journal of Educational Psychology, 81(1), 59–77. doi:10.1348/000709910x503501.

    Article  Google Scholar 

  • Maslow, A. H. (1943). A theory of human motivation. Psychological Review, 50(4), 370–396.

    Article  Google Scholar 

  • Maslow, A. H. (1970). Religions, values, and peak-experiences. London: Penguin.

    Google Scholar 

  • Mathy, F., & Feldman, J. (2012). What’s magic about magic numbers? Chunking and data compression in short-term memory. Cognition, 122(3), 346–362. doi:10.1016/j.cognition.2011.11.003.

    Article  Google Scholar 

  • Matthews, M. R. (1993). Constructivism and science education: Some epistemological problems. Journal of Science Education and Technology, 2(1), 359–370.

    Article  Google Scholar 

  • Matthews, M. R. (1994). Discontent with constructivism. Studies in Science Education, 24, 165–172. doi:10.1080/03057269408560045.

    Article  Google Scholar 

  • Matthews, M. R. (Ed.). (1998). Constructivism in science education: A philosophical examination. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • McClary, L. M., & Bretz, S. L. (2012). Development and assessment of a diagnostic tool to identify organic chemistry students’ alternative conceptions related to acid strength. International Journal of Science Education, 34(15), 2317–2341. doi:10.1080/09500693.2012.684433.

    Article  Google Scholar 

  • Mosher, M. D., Mosher, M. W., & Garoutte, M. P. (2012). Organic mastery: An activity for the undergraduate classroom. Journal of Chemical Education, 89(5), 646–648. doi:10.1021/ed200015v.

    Article  CAS  Google Scholar 

  • Nakamura, J. (1988). Optimal experience and the uses of talent. In M. Csikszentmihalyi & I. S. Csikszentmihalyi (Eds.), Optimal experience: Psychological studies of flow in consciousness (pp. 319–326). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Osborne, R. J., & Wittrock, M. C. (1983). Learning science: A generative process. Science Education, 67(4), 489–508.

    Article  Google Scholar 

  • Osborne, R. J., & Wittrock, M. C. (1985). The generative learning model and its implications for science education. Studies in Science Education, 12, 59–87.

    Article  Google Scholar 

  • Perry, W. G. (1970). Forms of intellectual and ethical development in the college years: A scheme. New York: Holt, Rinehart & Winston.

    Google Scholar 

  • Peterson, C., & Park, N. (2010). What happened to self-actualization? Commentary on Kenrick et al. (2010). Perspectives on Psychological Science, 5(3), 320–322. doi:10.1177/1745691610369471.

    Article  Google Scholar 

  • Phillips, D. C. (Ed.). (2000). Constructivism in education: Opinions and second opinions on controversial issues. Chicago, IL: National Society for the Study of Education.

    Google Scholar 

  • Piaget, J. (1929/1973). The child’s conception of the World (trans: Tomlinson J, Tomlinson A). St. Albans: Granada.

    Google Scholar 

  • Piaget, J. (1970/1972). The principles of genetic epistemology (trans: Mays W). London: Routledge & Kegan Paul.

    Google Scholar 

  • Pintrich, P. R., Marx, R. W., & Boyle, R. A. (1993). Beyond cold conceptual change: The role of motivational beliefs and classroom contextual factors in the process of conceptual change. Review of Educational Research, 63(2), 167–199.

    Article  Google Scholar 

  • Ryan, B. J. (2013). Line up, line up: Using technology to align and enhance peer learning and assessment in a student centred foundation organic chemistry module. Chemistry Education Research and Practice, 14(3), 229–238. doi:10.1039/c3rp20178c.

    Article  CAS  Google Scholar 

  • Scerri, E. R. (2003). Philosophical confusion in chemical education research. Journal of Chemical Education, 80(20), 468–474.

    Article  CAS  Google Scholar 

  • Schutz, A., & Luckmann, T. (1973). The structures of the life-World (trans: Zaner RM, Engelhardt HT). Evanston, IL: Northwest University Press.

    Google Scholar 

  • Scott, P. H. (1998). Teacher talk and meaning making in science classrooms: A review of studies from a Vygotskian perspective. Studies in Science Education, 32, 45–80.

    Article  Google Scholar 

  • Silvia, P. J. (2008). Interest—the curious emotion. Current Directions in Psychological Science, 17(1), 57–60. doi:10.1111/j.1467-8721.2008.00548.x.

    Article  Google Scholar 

  • Smardon, R. (2009). Sociocultural and cultural-historical frameworks for science education. In W.-M. Roth & K. Tobin (Eds.), The world of science education: Handbook of research in North America (The World of Science Education, Vol. 1, pp. 15–25). Rotterdam, The Netherlands: Sense Publishers.

    Google Scholar 

  • Solomon, J. (1983). Learning about energy: How pupils think in two domains. European Journal of Science Education, 5(1), 49–59. doi:10.1080/0140528830050105.

    Article  Google Scholar 

  • Solomon, J. (1992). Getting to know about energy—in school and society. London: Falmer Press.

    Google Scholar 

  • Strong, K., & Hutchins, H. (2009). Connectivism: A theory for learning in a world of growing complexity Impact. Journal of Applied Research in Workplace E-learning, 1(1), 53–67.

    Google Scholar 

  • Taber, K. S. (1998). An alternative conceptual framework from chemistry education. International Journal of Science Education, 20(5), 597–608.

    Article  Google Scholar 

  • Taber, K. S. (2000). Chemistry lessons for universities?: A review of constructivist ideas. University Chemistry Education, 4(2), 26–35.

    Google Scholar 

  • Taber, K. S. (2001). Building the structural concepts of chemistry: Some considerations from educational research. Chemistry Education: Research and Practice in Europe, 2(2), 123–158.

    CAS  Google Scholar 

  • Taber, K. S. (2002). Chemical misconceptions—Prevention, diagnosis and cure: Theoretical background (Vol. 1). London: Royal Society of Chemistry.

    Google Scholar 

  • Taber, K. S. (2003). Examining structure and context—questioning the nature and purpose of summative assessment. School Science Review, 85(311), 35–41.

    Google Scholar 

  • Taber, K. S. (2006). Beyond constructivism: The Progressive Research Programme into Learning Science. Studies in Science Education, 42, 125–184.

    Article  Google Scholar 

  • Taber, K. S. (2009). Progressing science education: Constructing the scientific research programme into the contingent nature of learning science. Dordrecht: Springer. doi:10.1007/978-90-481-2431-2.

    Book  Google Scholar 

  • Taber, K. S. (2010a). Constructivism and direct instruction as competing instructional paradigms: An essay review of Tobias and Duffy’s constructivist instruction: Success or failure? Education Review, 13(8), 1–44.

    Google Scholar 

  • Taber, K. S. (2010b). Straw men and false dichotomies: Overcoming philosophical confusion in chemical education. Journal of Chemical Education, 87(5), 552–558. doi:10.1021/ed8001623.

    Article  CAS  Google Scholar 

  • Taber, K. S. (2011). Constructivism as educational theory: Contingency in learning, and optimally guided instruction. Educational theory. New York: Nova.

    Google Scholar 

  • Taber, K. S. (2012). Student-generated analogies. Retrieved from https://camtools.cam.ac.uk/wiki/eclipse/student-generated%20analogies.html.

    Google Scholar 

  • Taber, K. S. (2013a). A common core to chemical conceptions: Learners’ conceptions of chemical stability, change and bonding. In G. Tsaparlis & H. Sevian (Eds.), Concepts of matter in science education (pp. 391–418). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Taber, K. S. (2013b). Modelling learners and learning in science education: Developing representations of concepts, conceptual structure and conceptual change to inform teaching and research. Dordrecht: Springer.

    Book  Google Scholar 

  • Taber, K. S. (Forthcoming). Epistemic relevance and learning chemistry in an academic context: The place of chemistry education in supporting the development of scientific curiosity and intellect. In I. Eilks & A. Hofstein (Eds.), Relevant chemistry education – from theory to practice. Rotterdam: Sense.

    Google Scholar 

  • Taber, K. S., & Bricheno, P. A. (2009). Coordinating procedural and conceptual knowledge to make sense of word equations: Understanding the complexity of a ‘simple’ completion task at the learner's resolution. International Journal of Science Education, 31(15), 2021–2055. doi:10.1080/09500690802326243.

    Article  Google Scholar 

  • Tobias, S., & Duffy, T. M. (Eds.). (2009). Constructivist instruction: Success or failure? New York: Routledge.

    Google Scholar 

  • Tobin, K. (Ed.). (1993). The practice of constructivism in science education. Hilsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Toulmin, S. (2003/1958). The uses of argument, updated edn. Cambridge: Cambridge University Press.

    Google Scholar 

  • von Glasersfeld, E. (1989). Cognition, construction of knowledge, and teaching. Synthese, 80(1), 121–140.

    Article  Google Scholar 

  • Vygotsky, L. S. (1934/1986). Thought and language. London: MIT Press.

    Google Scholar 

  • Vygotsky, L. S. (1934/1994). The development of academic concepts in school aged children. In: R. van der Veer, J. Valsiner (Eds.), The Vygotsky reader (pp. 355–370). Oxford: Blackwell.

    Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Watson, J. B. (1967). What is behaviourism? In J. A. Dyal (Ed.), Readings in psychology: Understanding human behavior (2nd ed., pp. 7–9). New York: McGraw-Hill Book Company.

    Google Scholar 

  • Whitebread, D., & Pino-Pasternak, D. (2010). Metacognition, self-regulation and meta-knowing. In K. Littleton, C. Wood, & J. Kleine-Staarman (Eds.), International handbook of psychology in education (pp. 673–711). Bingley, UK: Emerald.

    Google Scholar 

  • Wiltgen, B. J., Brown, R. A. M., Talton, L. E., & Silva, A. J. (2004). New circuits for old memories: The role of the neocortex in consolidation. Neuron, 44(1), 101–108. doi:10.1016/j.neuron.2004.09.015.

    Article  CAS  Google Scholar 

  • Yager, R. E. (1995). Constructivism and the learning of science. In S. M. Glynn & R. Duit (Eds.), Learning science in the schools: Research reforming practice (pp. 35–58). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith S. Taber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Taber, K.S. (2015). Meeting Educational Objectives in the Affective and Cognitive Domains: Personal and Social Constructivist Perspectives on Enjoyment, Motivation and Learning Chemistry. In: Kahveci, M., Orgill, M. (eds) Affective Dimensions in Chemistry Education. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45085-7_1

Download citation

Publish with us

Policies and ethics