Skip to main content

Vertex Fault Tolerant Additive Spanners

  • Conference paper
Distributed Computing (DISC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8784))

Included in the following conference series:

Abstract

A fault-tolerant structure for a network is required to continue functioning following the failure of some of the network’s edges or vertices. In this paper, we address the problem of designing a fault-tolerant additive spanner, namely, a subgraph H of the network G such that subsequent to the failure of a single vertex, the surviving part of H still contains an additive spanner for (the surviving part of) G, satisfying dist(s,t,H ∖ {v}) ≤ dist(s,t,G ∖ {v}) + β for every s,t,v ∈ V. Recently, the problem of constructing fault-tolerant additive spanners resilient to the failure of up to f-edges has been considered [8]. The problem of handling vertex failures was left open therein. In this paper we develop new techniques for constructing additive FT-spanners overcoming the failure of a single vertex in the graph. Our first result is an FT-spanner with additive stretch 2 and O(n 5/3) edges. Our second result is an FT-spanner with additive stretch 6 and O(n 3/2) edges. The construction algorithm consists of two main components: (a) constructing an FT-clustering graph and (b) applying a modified path-buying procedure suitably adopted to failure prone settings. Finally, we also describe two constructions for fault-tolerant multi-source additive spanners, aiming to guarantee a bounded additive stretch following a vertex failure, for every pair of vertices in S ×V for a given subset of sources S ⊆ V. The additive stretch bounds of our constructions are 4 and 8 (using a different number of edges).

Recipient of the Google European Fellowship in distributed computing; research is supported in part by this Fellowship. Supported in part by the Israel Science Foundation (grant 894/09), the I-CORE program of the Israel PBC and ISF (grant 4/11), the United States-Israel Binational Science Foundation (grant 2008348), the Israel Ministry of Science and Technology (infrastructures grant), and the Citi Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM J. Comput. 28(4), 1167–1181 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Knudsen, M.B.T.: Additive Spanners: A Simple Construction. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 277–281. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  3. Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in expected O(n 2) time. ACM Trans. Algorithms 2(4), 557–577 (2006)

    Article  MathSciNet  Google Scholar 

  4. Baswana, S., Khanna, N.: Approximate Shortest Paths Avoiding a Failed Vertex: Optimal Size Data Structures for Unweighted Graph. In: STACS, pp. 513–524 (2010)

    Google Scholar 

  5. Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: Additive spanners and (α, β)-spanners. ACM Trans. Algo. 7, A.5 (2010)

    Google Scholar 

  6. Bernstein, A.: A nearly optimal algorithm for approximating replacement paths and k shortest simple paths in general graphs. In: Proc. 21st ACM-SIAM Symp. on Discrete Algorithms (2010)

    Google Scholar 

  7. Bernstein, A., Karger, D.: A nearly optimal oracle for avoiding failed vertices and edges. In: Proc. 41st ACM Symp. on Theory of Computing, pp. 101–110 (2009)

    Google Scholar 

  8. Braunschvig, G., Chechik, S., Peleg, D.: Fault tolerant additive spanners. In: Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds.) WG 2012. LNCS, vol. 7551, pp. 206–214. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: f-sensitivity distance oracles and routing schemes. Algorithmica 63, 861–882 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: Fault-tolerant spanners for general graphs. In: STOC, pp. 435–444 (2009)

    Google Scholar 

  11. Chechik, S.: New Additive Spanners. In: SODA (2013)

    Google Scholar 

  12. Cygan, M., Grandoni, F., Kavitha, T.: On Pairwise Spanners. In: STACS, pp. 209–220 (2013)

    Google Scholar 

  13. Dinitz, M., Krauthgamer, R.: Fault-tolerant spanners: better and simpler. In: PODC, pp. 169–178 (2011)

    Google Scholar 

  14. Dor, D., Halperin, S., Zwick, U.: All-pairs almost shortest paths. SIAM J. Computing 29(5), 1740–1759 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Elkin, M., Peleg, D.: (1 + ε, β)-Spanner Constructions for General Graphs. SIAM Journal on Computing 33(3), 608–631 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grandoni, F., Williams, V.V.: Improved Distance Sensitivity Oracles via Fast Single-Source Replacement Paths. In: FOCS (2012)

    Google Scholar 

  17. Parter, M., Peleg, D.: Sparse Fault-tolerant BFS trees. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 779–790. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Parter, M., Peleg, D.: Fault Tolerant Approximate BFS Structures. In: SODA (2014)

    Google Scholar 

  19. Roditty, L., Zwick, U.: Replacement paths and k simple shortest paths in unweighted directed graphs. ACM Trans. Algorithms (2012)

    Google Scholar 

  20. Thorup, M., Zwick, U.: Spanners and emulators with sublinear distance errors. In: SODA, pp. 802–809 (2006)

    Google Scholar 

  21. Weimann, O., Yuster, R.: Replacement paths via fast matrix multiplication. In: FOCS (2010)

    Google Scholar 

  22. Woodruff, D.P.: Lower bounds for additive spanners, emulators, and more. In: FOCS, pp. 389–398 (2006)

    Google Scholar 

  23. Woodruff, D.P.: Additive spanners in nearly quadratic time. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. Part I. LNCS, vol. 6198, pp. 463–474. Springer, Heidelberg (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Parter, M. (2014). Vertex Fault Tolerant Additive Spanners. In: Kuhn, F. (eds) Distributed Computing. DISC 2014. Lecture Notes in Computer Science, vol 8784. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45174-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45174-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45173-1

  • Online ISBN: 978-3-662-45174-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics