Skip to main content

Visual Texture Perception with Feature Learning Models and Deep Architectures

  • Conference paper
Pattern Recognition (CCPR 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 483))

Included in the following conference series:

Abstract

Texture is an important property of images, and a key component for human visual perception. In this work, based on several feature learning models and deep architectures, we study the visual texture perception problem, which is helpful for understanding both the impact of texture itself and the basic mechanisms of human visual systems. Through a series of psychophysical experiments, we find that 12 perceptual features are significant to describe the texture images with regard to the human perceptions. Hence, we represent each texture image with a 12-dimensional vector, corresponding to the values of the 12 perceptual features. To improve the learnablity of existing feature learning models, we propose a set of deep architectures to learn compact representations of the texture perceptual features. Extensive experiments on texture images classification demonstrate the effectiveness of both the feature learning models and the deep architectures. In particular, the advantage of deep architectures over existing feature learning models is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chang, C.C., Lin, C.J.: Libsvm: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST) 2(3), 27 (2011)

    Google Scholar 

  2. Durgin, F.: Texture contrast aftereffects are monocular, texture density aftereffects are binocular. Vision Research 41, 2619–2630 (2001)

    Article  Google Scholar 

  3. Gurnsey, R., Fleet, D.: Texture space. Vision Research 41, 745–757 (2001)

    Article  Google Scholar 

  4. Heeger, D., Bergen, J.: Pyramid-based Texture Analysis/Synthesis. In: SIGGRAPH, pp. 229–238. ACM (1995)

    Google Scholar 

  5. Hinton, G., Roweis, S.: Stochastic Neighbor Embedding. In: NIPS, vol. 2, pp. 833–840 (2002)

    Google Scholar 

  6. Hinton, G., Salakhutdinov, R.: Reducing the Dimensionality of Data with Neural Networks. Science 313(5786), 504–507 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Jolliffe, I.: Principal Component Analysis, 2nd edn. Springer (October 2002)

    Google Scholar 

  8. Kingdom, F., Hayes, A., Field, D.: Sensitivity to contrast histogram differences in synthetic wavelet-textures. Vision Research 41, 585–598 (2001)

    Article  Google Scholar 

  9. Kruskal, J., Wish, M.: Multidimensional Scaling, vol. 11. Sage (1978)

    Google Scholar 

  10. Landy, M., Graham, N.: Visual Perception of Texture. In: The Visual Neurosciences, pp. 1106–1118. MIT Press (2004)

    Google Scholar 

  11. Lawrence, N.: Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data. In: NIPS, vol. 2, p. 5 (2003)

    Google Scholar 

  12. Liu, J., Dong, J., Qi, L., Chantler, M.: Identifying perceptual features of procedural textures. In: ECVP (2013)

    Google Scholar 

  13. van der Maaten, L.: An Introduction to Dimensionality Reduction Using MATLAB. Report 1201(07-07), 62 (2007)

    Google Scholar 

  14. Mekuz, N., Tsotsos, J.K.: Parameterless isomap with adaptive neighborhood selection. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 364–373. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Rao, A., Lohse, G.: Towards a Texture Naming System: Identifying Relevant Dimensions of Texture. Vision Research 36, 1649–1669 (1996)

    Article  Google Scholar 

  16. Salakhutdinov, R., Hinton, G.: Deep Boltzmann Machines. In: AISTATS, pp. 448–455 (2009)

    Google Scholar 

  17. Sammon, J.: A Nonlinear Mapping for Data Structure Analysis. IEEE Transactions on Computers 18(5), 401–409 (1969)

    Article  Google Scholar 

  18. Tipping, M., Bishop, C.: Probabilistic Principal Component Analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(3), 611–622 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wolfson, S., Landy, M.: Examining Edge- and Region-based Texture Mechanisms. Vision Research 38(3), 439–446 (1998)

    Article  Google Scholar 

  20. Zhang, T., Yang, J., Zhao, D., Ge, X.: Linear Local Tangent Space Alignment and Application to Face Recognition. Neurocomputing 70(7), 1547–1553 (2007)

    Article  Google Scholar 

  21. Zhang, Z., Zha, H.: Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment. SIAM J. Scientific Computing 26(1), 313–338 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhong, G., Cheriet, M.: Large Margin Low Rank Tensor Analysis. Neural Computation 26(4), 761–780 (2014)

    Article  MathSciNet  Google Scholar 

  23. Zhong, G., Li, W.J., Yeung, D.Y., Hou, X., Liu, C.L.: Gaussian Process Latent Random Field. In: AAAI (2010)

    Google Scholar 

  24. Zhong, G., Liu, C.L.: Error-Correcting Output Codes Based Ensemble Feature Extraction. Pattern Recognition 46(4), 1091–1100 (2013)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, Y., Zhong, G., Liu, J., Cai, X., Dong, J. (2014). Visual Texture Perception with Feature Learning Models and Deep Architectures. In: Li, S., Liu, C., Wang, Y. (eds) Pattern Recognition. CCPR 2014. Communications in Computer and Information Science, vol 483. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45646-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45646-0_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45645-3

  • Online ISBN: 978-3-662-45646-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics