Skip to main content

Micro-scale Landslide Displacements Detection Using Bayesian Methods Applied to GNSS Data

  • Chapter
  • First Online:
Modern Technologies for Landslide Monitoring and Prediction

Part of the book series: Springer Natural Hazards ((SPRINGERNAT))

Abstract

In this chapter, we evaluate the movement of 6 points near a landslide body, which were surveyed with GNSS receivers over time. We apply Bayesian inference to identify the areas on the ground with statistically significant vertical (downwards) shifts. Traditional statistical methods work well only when point displacements between different survey epochs are sufficiently large compared to the standard deviations of related coordinates. In such cases, coordinate differences of some points can be marked as potential displacements. The Bayesian analysis can help to improve discrimination when height differences, computed with respect to the first measurement epoch, are at the same order of magnitude as the uncertainties of the measures. After the application of the classical statistical test, one network point, close to the upper part of the landslide area, seemed to be more unstable than the remainder. In order to remove or validate the hypothesis of instability, the Bayesian statistical inference was applied, and all three of the upper group of points show significant shift, depending on the data prior parameters. This application shows that the Bayesian approach can be considered as an integration to classical statistical significance testing (e.g. z-test), reliably showing significance in vertical directional (i.e., downwards) coordinate shifts, thus supporting detection of movements having lower magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barbarella, M., Fiani, M., & Lugli, A. (2013). Landslide monitoring using multitemporal terrestrial laser scanning for ground displacement analysis. Geomatics, Natural Hazards and Risk, 21 (2013). doi:10.1080/19475705.2013.863808.

  • Barbarella, M., Fiani, M., & Lugli, A. (2014). Multi-temporal terrestrial laser scanning survey of a landslide. In M. Scaioni (Ed.), Modern technologies for landslide investigation and prediction (pp. 89–121). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Betti, B., Biagi, L., Crespi, M., & Riguzzi, F. (1999). GPS sensitivity analysis applied to non-permanent deformation control networks. Journal of Geodesy, 73, 158–167.

    Article  Google Scholar 

  • Betti, B., Sansò, F., & Crespi, M. (2001). Deformation detection according to a Bayesian approach. In: B. Benciolini (Ed.), IV Hotine-Marussi Symposium on Mathematical Geodesy, IAG Symposia, (Vol. 122, pp. 83–88). Heidelberg: Springer. doi:10.1007/978-3-642-56677-6_12.

  • Betti, B., Cazzaniga, N. E., & Tornatore, V. (2011). Deformation assessment considering an a priori functional model in a bayesian framework. Journal of Surveying Engineering, 137, 113–119.

    Article  Google Scholar 

  • Bitelli, G., Dubbini, M., & Zanutta, A. (2004). Terrestrial laser scanning and digital photogrammetry techniques to monitor landslide bodies. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(7B), 246–251.

    Google Scholar 

  • Borghi, A., Cannizzaro, L., & Vitti, A. (2012). Advanced techniques for discontinuity detection in GNSS coordinate time-series. an italian case study. In: S. Kenyon et al. (Eds.), Geodesy for Planet Earth, IAG Symposia (Vol. 136, pp. 627–634). Heidelberg: Springer. doi:10.1007/978-3-642-20338-1_77.

  • Cina, A., & Piras, M. (2014) Performance of low-cost GNSS receiver for landslides monitoring: test and results. Geomatics, Natural Hazards and Risk, p. 18. doi:10.1080/19475705.2014.889046.

  • Crosetto, M., Monserrat, O., Luzi, G., Cuevas-González, M., & Devanthéry, N. (2014). Discontinuous GBSAR deformation monitoring. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 136–141.

    Article  Google Scholar 

  • Dowman, I. (2004). Integration of LiDAR and IFSAR for mapping. The International Archives of The Photogrammetry, Remote Sensing and Spatial Information Sciences, 35(2), 11.

    Google Scholar 

  • Farina, P., Colombo, D., Fumagalli, A., Marks, F., & Moretti, S. (2006). Permanent scatterers for landslide investigations: outcomes from the ESA-SLAM project. Engineering Geology, 88(3–4), 200–217.

    Article  Google Scholar 

  • Forlani, G., Roncella, R., & Diotri, F. (2013). Production of high-resolution digital terrain models in mountain regions to support risk assessment. In: Geomatics, Natural Hazards and Risk (p. 19). doi:10.1080/19475705.2013.862746.

  • Frangioni, S., Bianchini, S., & Moretti, S. (2014). Landslide inventory updating by means of persistent scatterer interferometry (PSI): The Setta basin (Italy) case study. In: Geomatics, Natural Hazards and Risk. p. 20, doi:10.1080/19475705.2013.866985.

  • Gregoretti, C., & Dalla Fontana, G. (2008). The triggering of debris flow due to channel-bed failure in some alpine headwater basins of the dolomites: Analyses of critical runoff. Hydrological Processes, 22, 2248–2263.

    Article  Google Scholar 

  • Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2007). GNSS—global navigation satellite systems: GPS, GLONASS, Galileo, and more (p. 516). Heidelberg: Springer.

    Google Scholar 

  • IGM (2014). Rete Geodetica Nazionale. http://www.igmi.org/geodetica/. Accessed July 10th 2014.

  • Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M. H., Loye, A., Metzger, R., et al. (2012). Use of LIDAR in landslide investigations: A review. Natural Hazards, 61, 1–24.

    Article  Google Scholar 

  • Koch, K. (2007). Introduction to Bayesian statistics. Heidelberg: Springer.

    Google Scholar 

  • Lingua, A., Piatti, D., & Rinaudo, F. (2007). Remote Monitoring of a landslide using an integration of GB-InSAR and LiDAR techniques. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(B1), 361–366.

    Google Scholar 

  • Manfré, L. A., Hirata, E., Silva, J. B., Shinohara, E. J., Giannotti, M. A., Larocca, A. P. C., et al. (2012). An analysis of geospatial technologies for risk and natural disaster management. ISPRS International Journal of Geo-Information, 1(3), 166–185.

    Article  Google Scholar 

  • Monserrat, O., Crosetto, M., & Luzi, G. (2014). A review of ground-based SAR interferometry for deformation measurement. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 40–48.

    Article  Google Scholar 

  • Pirotti, F., Guarnieri, A., & Vettore, A. (2013). Vegetation filtering of waveform terrestrial laser scanner data for DTM production. Applied Geomatics, 5(4), 311–322.

    Article  Google Scholar 

  • Previtali, M., Barazzetti, L., & Scaioni, M. (2014). Accurate 3D surface measurement of mountain slopes through a fully automated imaged-based technique. Earth Science Informatics, 7, 109–122.

    Article  Google Scholar 

  • Refice, A., Bovenga, F., Wasowski, J., & Guerriero, L. (2000). Use of InSAR data for landslide monitoring: a case study from southern Italy. In: Proceedings of the IGARSS 2000, Honolulu, 24–28 July 2000, (Vol. 6, pp. 2504–2506). doi:10.1109/IGARSS.2000.859621.

  • Remondino, F., Spera, M. G., Nocerino, E., Menna, F., & Nez, F. (2014). State of the art in high density image matching. The Photogrammetric Record, 29(146), 144–166.

    Article  Google Scholar 

  • Sacerdote, F., Cazzaniga, N. E., & Tornatore, V. (2010). Some considerations on significance analysis for deformation detection via frequentist and Bayesian tests. Journal of Geodesy, 84, 233–242.

    Article  Google Scholar 

  • Scaioni, M., Feng, T., Barazzetti, L., Previtali, M., Lu, P., & Qiao, G., et al. (2014a). Some applications of 2-D and 3-D photogrammetry during laboratory experiments for hydrogeological risk assessment. Geomatics, Natural Hazards and Risk, 24 (2014). doi:10.1080/19475705.2014.885090.

  • Scaioni, M., Feng, T., Lu, P., Qiao, G., Tong, X., Li, R., et al. (2014b). Close-range photogrammetric techniques for deformation measurement: Applications to landslides. In M. Scaioni (Ed.), Modern Technologies for Landslide Investigation and Prediction (pp. 13–41). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Wang, G., & Soler, T. (2012). OPUS for horizontal subcentimeter-accuracy landslide monitoring: case study in the Puerto rico and Virgin islands region. Journal of Surveying Engineering, 138(3), 143–153.

    Article  Google Scholar 

  • Ye, X., Kaufmann, H., & Guo, X. F. (2004). Landslide monitoring in the three gorges area using D-INSAR and corner reflectors. Photogrammetric Engineering & Remote Sensing, 70, 1167–1172.

    Article  Google Scholar 

  • Zwillinger, D. (2012). CRC Standard Mathematical Tables.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Pirotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pirotti, F., Guarnieri, A., Masiero, A., Gregoretti, C., Degetto, M., Vettore, A. (2015). Micro-scale Landslide Displacements Detection Using Bayesian Methods Applied to GNSS Data. In: Scaioni, M. (eds) Modern Technologies for Landslide Monitoring and Prediction. Springer Natural Hazards. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45931-7_6

Download citation

Publish with us

Policies and ethics