Skip to main content

Nitric Oxide-Mediated Pain Processing in the Spinal Cord

  • Chapter
Pain Control

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 227))

Abstract

A large body of evidence indicates that nitric oxide (NO) plays an important role in the processing of persistent inflammatory and neuropathic pain in the spinal cord. Several animal studies revealed that inhibition or knockout of NO synthesis ameliorates persistent pain. However, spinal delivery of NO donors caused dual pronociceptive and antinociceptive effects, pointing to multiple downstream signaling mechanisms of NO. This review summarizes the localization and function of NO-dependent signaling mechanisms in the spinal cord, taking account of the recent progress made in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

cGKI:

cGMP-dependent protein kinase I (synonym PKG-1, protein kinase G-1)

cGMP:

3′, 5′-cyclic guanosine monophosphate

CNG:

Cyclic-nucleotide gated

DRG:

Dorsal root ganglion

GC-A:

Particulate guanylyl cyclase A (synonym NPR-A, natriuretic peptide receptor A)

GC-B:

Particulate guanylyl cyclase B (synonym NPR-B, natriuretic peptide receptor B)

HCN:

Hyperpolarization activated and cyclic-nucleotide gated

NO:

Nitric oxide

NO-GC:

NO-sensitive guanylyl cyclase (synonym sGC, soluble guanylyl cyclase)

NOS:

NO synthase

PDE:

Phosphodiesterase

References

  • Aimi Y, Fujimura M, Vincent SR, Kimura H (1991) Localization of NADPH-diaphorase-containing neurons in sensory ganglia of the rat. J Comp Neurol 306:382–392

    CAS  PubMed  Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 87:1620–1624

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bernardi PS, Valtschanoff JG, Weinberg RJ, Schmidt HH, Rustioni A (1995) Synaptic interactions between primary afferent terminals and GABA and nitric oxide-synthesizing neurons in superficial laminae of the rat spinal cord. J Neurosci 15:1363–1371

    CAS  PubMed  Google Scholar 

  • Berrazueta JR, Losada A, Poveda J, Ochoteco A, Riestra A, Salas E, Amado JA (1996) Successful treatment of shoulder pain syndrome due to supraspinatus tendinitis with transdermal nitroglycerin. A double blind study. Pain 66:63–67

    CAS  PubMed  Google Scholar 

  • Bian K, Ke Y, Kamisaki Y, Murad F (2006) Proteomic modification by nitric oxide. J Pharmacol Sci 101:271–279

    CAS  PubMed  Google Scholar 

  • Boettger MK, Uceyler N, Zelenka M, Schmitt A, Reif A, Chen Y, Sommer C (2007) Differences in inflammatory pain in nNOS-, iNOS- and eNOS-deficient mice. Eur J Pain 11:810–818

    CAS  PubMed  Google Scholar 

  • Burgoyne JR, Madhani M, Cuello F, Charles RL, Brennan JP, Schroder E, Browning DD, Eaton P (2007) Cysteine redox sensor in PKGIa enables oxidant-induced activation. Science 317:1393–1397

    CAS  PubMed  Google Scholar 

  • Cadiou H, Studer M, Jones NG, Smith ES, Ballard A, McMahon SB, McNaughton PA (2007) Modulation of acid-sensing ion channel activity by nitric oxide. J Neurosci 27:13251–13260

    CAS  PubMed  Google Scholar 

  • Chen Z, Muscoli C, Doyle T, Bryant L, Cuzzocrea S, Mollace V, Mastroianni R, Masini E, Salvemini D (2010) NMDA-receptor activation and nitroxidative regulation of the glutamatergic pathway during nociceptive processing. Pain 149:100–106

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chu YC, Guan Y, Skinner J, Raja SN, Johns RA, Tao YX (2005) Effect of genetic knockout or pharmacologic inhibition of neuronal nitric oxide synthase on complete Freund’s adjuvant-induced persistent pain. Pain 119:113–123

    CAS  PubMed  Google Scholar 

  • Craven KB, Zagotta WN (2006) CNG and HCN channels: two peas, one pod. Annu Rev Physiol 68:375–401

    CAS  PubMed  Google Scholar 

  • Dableh LJ, Henry JL (2011) The selective neuronal nitric oxide synthase inhibitor 7-nitroindazole has acute analgesic but not cumulative effects in a rat model of peripheral neuropathy. J Pain Res 4:85–90

    PubMed Central  CAS  PubMed  Google Scholar 

  • De Alba J, Clayton NM, Collins SD, Colthup P, Chessell I, Knowles RG (2006) GW274150, a novel and highly selective inhibitor of the inducible isoform of nitric oxide synthase (iNOS), shows analgesic effects in rat models of inflammatory and neuropathic pain. Pain 120:170–181

    PubMed  Google Scholar 

  • Ding JD, Weinberg RJ (2006) Localization of soluble guanylyl cyclase in the superficial dorsal horn. J Comp Neurol 495:668–678

    PubMed Central  CAS  PubMed  Google Scholar 

  • Doyle T, Chen Z, Muscoli C, Bryant L, Esposito E, Cuzzocrea S, Dagostino C, Ryerse J, Rausaria S, Kamadulski A, Neumann WL, Salvemini D (2012) Targeting the overproduction of peroxynitrite for the prevention and reversal of paclitaxel-induced neuropathic pain. J Neurosci 32:6149–6160

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dun NJ, Dun SL, Wu SY, Forstermann U, Schmidt HH, Tseng LF (1993) Nitric oxide synthase immunoreactivity in the rat, mouse, cat and squirrel monkey spinal cord. Neuroscience 54:845–857

    CAS  PubMed  Google Scholar 

  • Eliasson MJ, Blackshaw S, Schell MJ, Snyder SH (1997) Neuronal nitric oxide synthase alternatively spliced forms: prominent functional localizations in the brain. Proc Natl Acad Sci U S A 94:3396–3401

    PubMed Central  CAS  PubMed  Google Scholar 

  • Feil R, Kleppisch T (2008) NO/cGMP-dependent modulation of synaptic transmission. Handb Exp Pharmacol (184):529–560

    Google Scholar 

  • Ferreira J, Santos AR, Calixto JB (1999) The role of systemic, spinal and supraspinal L-arginine-nitric oxide-cGMP pathway in thermal hyperalgesia caused by intrathecal injection of glutamate in mice. Neuropharmacology 38:835–842

    CAS  PubMed  Google Scholar 

  • Francis SH, Busch JL, Corbin JD, Sibley D (2010) cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev 62:525–563

    PubMed Central  CAS  PubMed  Google Scholar 

  • Friebe A, Mergia E, Dangel O, Lange A, Koesling D (2007) Fatal gastrointestinal obstruction and hypertension in mice lacking nitric oxide-sensitive guanylyl cyclase. Proc Natl Acad Sci U S A 104:7699–7704

    PubMed Central  CAS  PubMed  Google Scholar 

  • Garbers DL, Chrisman TD, Wiegn P, Katafuchi T, Albanesi JP, Bielinski V, Barylko B, Redfield MM, Burnett JC Jr (2006) Membrane guanylyl cyclase receptors: an update. Trends Endocrinol Metab 17:251–258

    PubMed Central  CAS  PubMed  Google Scholar 

  • Garry MG, Abraham E, Hargreaves KM, Aanonsen LM (1994) Intrathecal injection of cell-permeable analogs of cyclic 3′,5′-guanosine monophosphate produces hyperalgesia in mice. Eur J Pharmacol 260:129–131

    CAS  PubMed  Google Scholar 

  • Gassner M, Leitner J, Gruber-Schoffnegger D, Forsthuber L, Sandkuhler J (2013) Properties of spinal lamina III GABAergic neurons in naive and in neuropathic mice. Eur J Pain 17:1168–1179

    CAS  PubMed  Google Scholar 

  • Guan Y, Yaster M, Raja SN, Tao YX (2007) Genetic knockout and pharmacologic inhibition of neuronal nitric oxide synthase attenuate nerve injury-induced mechanical hypersensitivity in mice. Mol Pain 3:29

    PubMed Central  PubMed  Google Scholar 

  • Guhring H, Gorig M, Ates M, Coste O, Zeilhofer HU, Pahl A, Rehse K, Brune K (2000) Suppressed injury-induced rise in spinal prostaglandin E2 production and reduced early thermal hyperalgesia in iNOS-deficient mice. J Neurosci 20:6714–6720

    CAS  PubMed  Google Scholar 

  • Haley JE, Dickenson AH, Schachter M (1992) Electrophysiological evidence for a role of nitric oxide in prolonged chemical nociception in the rat. Neuropharmacology 31:251–258

    CAS  PubMed  Google Scholar 

  • Heine S, Michalakis S, Kallenborn-Gerhardt W, Lu R, Lim HY, Weiland J, Del Turco D, Deller T, Tegeder I, Biel M, Geisslinger G, Schmidtko A (2011) CNGA3: a target of spinal NO/cGMP signaling and modulator of inflammatory pain hypersensitivity. J Neurosci 31:11184–11192

    CAS  PubMed  Google Scholar 

  • Henrich M, Hoffmann K, Konig P, Gruss M, Fischbach T, Godecke A, Hempelmann G, Kummer W (2002) Sensory neurons respond to hypoxia with NO production associated with mitochondria. Mol Cell Neurosci 20:307–322

    CAS  PubMed  Google Scholar 

  • Herdegen T, Rudiger S, Mayer B, Bravo R, Zimmermann M (1994) Expression of nitric oxide synthase and colocalisation with Jun, Fos and Krox transcription factors in spinal cord neurons following noxious stimulation of the rat hindpaw. Brain Res Mol Brain Res 22:245–258

    CAS  PubMed  Google Scholar 

  • Hervera A, Negrete R, Leanez S, Martin-Campos JM, Pol O (2010) The spinal cord expression of neuronal and inducible nitric oxide synthases and their contribution in the maintenance of neuropathic pain in mice. PLoS One 5:e14321

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hervera A, Leanez S, Negrete R, Motterlini R, Pol O (2012) Carbon monoxide reduces neuropathic pain and spinal microglial activation by inhibiting nitric oxide synthesis in mice. PLoS One 7:e43693

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166

    CAS  PubMed  Google Scholar 

  • Hughes AS, Averill S, King VR, Molander C, Shortland PJ (2008) Neurochemical characterization of neuronal populations expressing protein kinase C gamma isoform in the spinal cord and gracile nucleus of the rat. Neuroscience 153:507–517

    CAS  PubMed  Google Scholar 

  • Ibi M, Matsuno K, Shiba D, Katsuyama M, Iwata K, Kakehi T, Nakagawa T, Sango K, Shirai Y, Yokoyama T, Kaneko S, Saito N, Yabe-Nishimura C (2008) Reactive oxygen species derived from NOX1/NADPH oxidase enhance inflammatory pain. J Neurosci 28:9486–9494

    CAS  PubMed  Google Scholar 

  • Ikeda H, Stark J, Fischer H, Wagner M, Drdla R, Jager T, Sandkuhler J (2006) Synaptic amplifier of inflammatory pain in the spinal dorsal horn. Science 312:1659–1662

    CAS  PubMed  Google Scholar 

  • Iwamoto ET, Marion L (1994) Pharmacologic evidence that spinal muscarinic analgesia is mediated by an L-arginine/nitric oxide/cyclic GMP cascade in rats. J Pharmacol Exp Ther 271:601–608

    CAS  PubMed  Google Scholar 

  • Jin XG, Chen SR, Cao XH, Li L, Pan HL (2011) Nitric oxide inhibits nociceptive transmission by differentially regulating glutamate and glycine release to spinal dorsal horn neurons. J Biol Chem 286:33190–33202

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kallenborn-Gerhardt W, Schroder K, Del Turco D, Lu R, Kynast K, Kosowski J, Niederberger E, Shah AM, Brandes RP, Geisslinger G, Schmidtko A (2012) NADPH oxidase-4 maintains neuropathic pain after peripheral nerve injury. J Neurosci 32:10136–10145

    CAS  PubMed  Google Scholar 

  • Kallenborn-Gerhardt W, Schroder K, Geisslinger G, Schmidtko A (2013) NOXious signaling in pain processing. Pharmacol Ther 137:309–317

    CAS  PubMed  Google Scholar 

  • Kawamata T, Omote K (1999) Activation of spinal N-methyl-D-aspartate receptors stimulates a nitric oxide/cyclic guanosine 3,5-monophosphate/glutamate release cascade in nociceptive signaling. Anesthesiology 91:1415–1424

    CAS  PubMed  Google Scholar 

  • Kawano T, Zoga V, Kimura M, Liang MY, Wu HE, Gemes G, McCallum JB, Kwok WM, Hogan QH, Sarantopoulos CD (2009) Nitric oxide activates ATP-sensitive potassium channels in mammalian sensory neurons: action by direct S-nitrosylation. Mol Pain 5:12

    PubMed Central  PubMed  Google Scholar 

  • Kawasaki Y, Xu ZZ, Wang X, Park JY, Zhuang ZY, Tan PH, Gao YJ, Roy K, Corfas G, Lo EH, Ji RR (2008) Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat Med 14:331–336

    PubMed Central  CAS  PubMed  Google Scholar 

  • Keilhoff G, Fansa H, Wolf G (2002) Neuronal nitric oxide synthase is the dominant nitric oxide supplier for the survival of dorsal root ganglia after peripheral nerve axotomy. J Chem Neuroanat 24:181–187

    CAS  PubMed  Google Scholar 

  • Keilhoff G, Schroder H, Peters B, Becker A (2013) Time-course of neuropathic pain in mice deficient in neuronal or inducible nitric oxide synthase. Neurosci Res 77:215–221

    CAS  PubMed  Google Scholar 

  • Kim D, You B, Jo EK, Han SK, Simon MI, Lee SJ (2010) NADPH oxidase 2-derived reactive oxygen species in spinal cord microglia contribute to peripheral nerve injury-induced neuropathic pain. Proc Natl Acad Sci U S A 107:14851–14856

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kina VA, Villarreal CF, Prado WA (2005) The effects of intraspinal L-NOARG or SIN-1 on the control by descending pathways of incisional pain in rats. Life Sci 76:1939–1951

    CAS  PubMed  Google Scholar 

  • Kishimoto I, Tokudome T, Horio T, Soeki T, Chusho H, Nakao K, Kangawa K (2008) C-type natriuretic peptide is a Schwann cell-derived factor for development and function of sensory neurons. J Neuroendocrinol 20:1213–1223

    CAS  PubMed  Google Scholar 

  • Kitto KF, Haley JE, Wilcox GL (1992) Involvement of nitric oxide in spinally mediated hyperalgesia in the mouse. Neurosci Lett 148:1–5

    CAS  PubMed  Google Scholar 

  • Kuboyama K, Tsuda M, Tsutsui M, Toyohara Y, Tozaki-Saitoh H, Shimokawa H, Yanagihara N, Inoue K (2011) Reduced spinal microglial activation and neuropathic pain after nerve injury in mice lacking all three nitric oxide synthases. Mol Pain 7:50

    PubMed Central  CAS  PubMed  Google Scholar 

  • Laing I, Todd AJ, Heizmann CW, Schmidt HH (1994) Subpopulations of GABAergic neurons in laminae I-III of rat spinal dorsal horn defined by coexistence with classical transmitters, peptides, nitric oxide synthase or parvalbumin. Neuroscience 61:123–132

    CAS  PubMed  Google Scholar 

  • Lauretti GR, Lima IC, Reis MP, Prado WA, Pereira NL (1999a) Oral ketamine and transdermal nitroglycerin as analgesic adjuvants to oral morphine therapy for cancer pain management. Anesthesiology 90:1528–1533

    CAS  PubMed  Google Scholar 

  • Lauretti GR, de Oliveira R, Reis MP, Mattos AL, Pereira NL (1999b) Transdermal nitroglycerine enhances spinal sufentanil postoperative analgesia following orthopedic surgery. Anesthesiology 90:734–739

    CAS  PubMed  Google Scholar 

  • Lim H, Kim D, Lee SJ (2013) Toll-like receptor 2 mediates peripheral nerve injury-induced NADPH oxidase 2 expression in spinal cord microglia. J Biol Chem 288:7572–7579

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lin Q, Palecek J, Paleckova V, Peng YB, Wu J, Cui M, Willis WD (1999) Nitric oxide mediates the central sensitization of primate spinothalamic tract neurons. J Neurophysiol 81:1075–1085

    CAS  PubMed  Google Scholar 

  • Loo L, Shepherd AJ, Mickle AD, Lorca RA, Shutov LP, Usachev YM, Mohapatra DP (2012) The C-type natriuretic peptide induces thermal hyperalgesia through a noncanonical Gbetagamma-dependent modulation of TRPV1 channel. J Neurosci 32:11942–11955

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lorenz JE, Kallenborn-Gerhardt W, Lu R, Syhr KM, Eaton P, Geisslinger G, Schmidtko A (2014) Oxidant-induced activation of cGMP-dependent protein kinase Iα mediates neuropathic pain after peripheral nerve injury. Antioxid Redox Signal 21(10):1504–1515

    CAS  PubMed  Google Scholar 

  • Lu J, Katano T, Uta D, Furue H, Ito S (2011) Rapid S-nitrosylation of actin by NO-generating donors and in inflammatory pain model mice. Mol Pain 7:101

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lu R, Lukowski R, Sausbier M, Zhang DD, Sisignano M, Schuh CD, Kuner R, Ruth P, Geisslinger G, Schmidtko A (2014) BKCa channels expressed in sensory neurons modulate inflammatory pain in mice. Pain 155(3):556–565

    CAS  PubMed  Google Scholar 

  • Luo ZD, Cizkova D (2000) The role of nitric oxide in nociception. Curr Rev Pain 4:459–466

    CAS  PubMed  Google Scholar 

  • Luo ZD, Chaplan SR, Scott BP, Cizkova D, Calcutt NA, Yaksh TL (1999) Neuronal nitric oxide synthase mRNA upregulation in rat sensory neurons after spinal nerve ligation: lack of a role in allodynia development. J Neurosci 19:9201–9208

    CAS  PubMed  Google Scholar 

  • Luo C, Gangadharan V, Bali KK, Xie RG, Agarwal N, Kurejova M, Tappe-Theodor A, Tegeder I, Feil S, Lewin G, Polgar E, Todd AJ, Schlossmann J, Hofmann F, Liu DL, Hu SJ, Feil R, Kuner T, Kuner R (2012) Presynaptically localized cyclic GMP-dependent protein kinase 1 is a key determinant of spinal synaptic potentiation and pain hypersensitivity. PLoS Biol 10:e1001283

    PubMed Central  CAS  PubMed  Google Scholar 

  • Machelska H, Przewlocki R, Radomski MW, Przewlocka B (1998) Differential effects of intrathecally and intracerebroventricularly administered nitric oxide donors on noxious mechanical and thermal stimulation. Pol J Pharmacol 50:407–415

    CAS  PubMed  Google Scholar 

  • Maihofner C, Euchenhofer C, Tegeder I, Beck KF, Pfeilschifter J, Geisslinger G (2000) Regulation and immunohistochemical localization of nitric oxide synthases and soluble guanylyl cyclase in mouse spinal cord following nociceptive stimulation. Neurosci Lett 290:71–75

    CAS  PubMed  Google Scholar 

  • Mantyh PW, Hunt SP (2004) Setting the tone: superficial dorsal horn projection neurons regulate pain sensitivity. Trends Neurosci 27:582–584

    CAS  PubMed  Google Scholar 

  • Martucci C, Trovato AE, Costa B, Borsani E, Franchi S, Magnaghi V, Panerai AE, Rodella LF, Valsecchi AE, Sacerdote P, Colleoni M (2008) The purinergic antagonist PPADS reduces pain related behaviours and interleukin-1beta, interleukin-6, iNOS and nNOS overproduction in central and peripheral nervous system after peripheral neuropathy in mice. Pain 137:81–95

    CAS  PubMed  Google Scholar 

  • Meller ST, Gebhart GF (1993) Nitric oxide (NO) and nociceptive processing in the spinal cord. Pain 52:127–136

    CAS  PubMed  Google Scholar 

  • Meller ST, Dykstra C, Gebhart GF (1992) Production of endogenous nitric oxide and activation of soluble guanylate cyclase are required for N-methyl-D-aspartate-produced facilitation of the nociceptive tail-flick reflex. Eur J Pharmacol 214:93–96

    CAS  PubMed  Google Scholar 

  • Miyamoto T, Dubin AE, Petrus MJ, Patapoutian A (2009) TRPV1 and TRPA1 mediate peripheral nitric oxide-induced nociception in mice. PLoS One 4:e7596

    PubMed Central  PubMed  Google Scholar 

  • Morris R, Southam E, Braid DJ, Garthwaite J (1992) Nitric oxide may act as a messenger between dorsal root ganglion neurones and their satellite cells. Neurosci Lett 137:29–32

    CAS  PubMed  Google Scholar 

  • Ndengele MM, Cuzzocrea S, Esposito E, Mazzon E, Di Paola R, Matuschak GM, Salvemini D (2008) Cyclooxygenases 1 and 2 contribute to peroxynitrite-mediated inflammatory pain hypersensitivity. FASEB J 22:3154–3164

    CAS  PubMed  Google Scholar 

  • Paoloni JA, Appleyard RC, Nelson J, Murrell GA (2003) Topical nitric oxide application in the treatment of chronic extensor tendinosis at the elbow: a randomized, double-blinded, placebo-controlled clinical trial. Am J Sports Med 31:915–920

    PubMed  Google Scholar 

  • Pehl U, Schmid HA (1997) Electrophysiological responses of neurons in the rat spinal cord to nitric oxide. Neuroscience 77:563–573

    CAS  PubMed  Google Scholar 

  • Polgar E, Sardella TC, Tiong SY, Locke S, Watanabe M, Todd AJ (2013) Functional differences between neurochemically defined populations of inhibitory interneurons in the rat spinal dorsal horn. Pain 154:2606–2615

    PubMed Central  CAS  PubMed  Google Scholar 

  • Puskar Z, Polgar E, Todd AJ (2001) A population of large lamina I projection neurons with selective inhibitory input in rat spinal cord. Neuroscience 102:167–176

    CAS  PubMed  Google Scholar 

  • Qian Y, Chao DS, Santillano DR, Cornwell TL, Nairn AC, Greengard P, Lincoln TM, Bredt DS (1996) cGMP-dependent protein kinase in dorsal root ganglion: relationship with nitric oxide synthase and nociceptive neurons. J Neurosci 16:3130–3138

    CAS  PubMed  Google Scholar 

  • Ruscheweyh R, Goralczyk A, Wunderbaldinger G, Schober A, Sandkuhler J (2006) Possible sources and sites of action of the nitric oxide involved in synaptic plasticity at spinal lamina I projection neurons. Neuroscience 141:977–988

    CAS  PubMed  Google Scholar 

  • Saito S, Kidd GJ, Trapp BD, Dawson TM, Bredt DS, Wilson DA, Traystman RJ, Snyder SH, Hanley DF (1994) Rat spinal cord neurons contain nitric oxide synthase. Neuroscience 59:447–456

    CAS  PubMed  Google Scholar 

  • Salvemini D, Little JW, Doyle T, Neumann WL (2011) Roles of reactive oxygen and nitrogen species in pain. Free Radic Biol Med 51:951–966

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sardella TC, Polgar E, Watanabe M, Todd AJ (2011) A quantitative study of neuronal nitric oxide synthase expression in laminae I-III of the rat spinal dorsal horn. Neuroscience 192:708–720

    PubMed Central  CAS  PubMed  Google Scholar 

  • Scheving R, Wittig I, Heide H, Albuquerque B, Steger M, Brandt U, Tegeder I (2012) Protein S-nitrosylation and denitrosylation in the mouse spinal cord upon injury of the sciatic nerve. J Proteomics 75:3987–4004

    CAS  PubMed  Google Scholar 

  • Schmidt H, Stonkute A, Juttner R, Schaffer S, Buttgereit J, Feil R, Hofmann F, Rathjen FG (2007) The receptor guanylyl cyclase Npr2 is essential for sensory axon bifurcation within the spinal cord. J Cell Biol 179:331–340

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schmidtko A, Ruth P, Geisslinger G, Tegeder I (2003) Inhibition of cyclic guanosine 5′-monophosphate-dependent protein kinase I (PKG-I) in lumbar spinal cord reduces formalin-induced hyperalgesia and PKG upregulation. Nitric Oxide 8:89–94

    CAS  PubMed  Google Scholar 

  • Schmidtko A, Gao W, Konig P, Heine S, Motterlini R, Ruth P, Schlossmann J, Koesling D, Niederberger E, Tegeder I, Friebe A, Geisslinger G (2008a) cGMP produced by NO-sensitive guanylyl cyclase essentially contributes to inflammatory and neuropathic pain by using targets different from cGMP-dependent protein kinase I. J Neurosci 28:8568–8576

    CAS  PubMed  Google Scholar 

  • Schmidtko A, Gao W, Sausbier M, Rauhmeier I, Sausbier U, Niederberger E, Scholich K, Huber A, Neuhuber W, Allescher HD, Hofmann F, Tegeder I, Ruth P, Geisslinger G (2008b) Cysteine-rich protein 2, a novel downstream effector of cGMP/cGMP-dependent protein kinase I-mediated persistent inflammatory pain. J Neurosci 28:1320–1330

    CAS  PubMed  Google Scholar 

  • Schmidtko A, Tegeder I, Geisslinger G (2009) No NO, no pain? The role of nitric oxide and cGMP in spinal pain processing. Trends Neurosci 32:339–346

    CAS  PubMed  Google Scholar 

  • Scholz J, Woolf CJ (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 10:1361–1368

    CAS  PubMed  Google Scholar 

  • Shi TJ, Holmberg K, Xu ZQ, Steinbusch H, de Vente J, Hokfelt T (1998) Effect of peripheral nerve injury on cGMP and nitric oxide synthase levels in rat dorsal root ganglia: time course and coexistence. Pain 78:171–180

    CAS  PubMed  Google Scholar 

  • Song XJ, Wang ZB, Gan Q, Walters ET (2006) cAMP and cGMP contribute to sensory neuron hyperexcitability and hyperalgesia in rats with dorsal root ganglia compression. J Neurophysiol 95:479–492

    CAS  PubMed  Google Scholar 

  • Sousa AM, Prado WA (2001) The dual effect of a nitric oxide donor in nociception. Brain Res 897:9–19

    CAS  PubMed  Google Scholar 

  • Spike RC, Todd AJ, Johnston HM (1993) Coexistence of NADPH diaphorase with GABA, glycine, and acetylcholine in rat spinal cord. J Comp Neurol 335:320–333

    CAS  PubMed  Google Scholar 

  • Sung YJ, Walters ET, Ambron RT (2004) A neuronal isoform of protein kinase G couples mitogen-activated protein kinase nuclear import to axotomy-induced long-term hyperexcitability in Aplysia sensory neurons. J Neurosci 24:7583–7595

    CAS  PubMed  Google Scholar 

  • Sung YJ, Chiu DT, Ambron RT (2006) Activation and retrograde transport of protein kinase G in rat nociceptive neurons after nerve injury and inflammation. Neuroscience 141:697–709

    CAS  PubMed  Google Scholar 

  • Tang Q, Svensson CI, Fitzsimmons B, Webb M, Yaksh TL, Hua XY (2007) Inhibition of spinal constitutive NOS-2 by 1400W attenuates tissue injury and inflammation-induced hyperalgesia and spinal p38 activation. Eur J Neurosci 25:2964–2972

    PubMed  Google Scholar 

  • Tao YX, Johns RA (2002) Activation and up-regulation of spinal cord nitric oxide receptor, soluble guanylate cyclase, after formalin injection into the rat hind paw. Neuroscience 112:439–446

    CAS  PubMed  Google Scholar 

  • Tao YX, Hassan A, Haddad E, Johns RA (2000) Expression and action of cyclic GMP-dependent protein kinase Ialpha in inflammatory hyperalgesia in rat spinal cord. Neuroscience 95:525–533

    CAS  PubMed  Google Scholar 

  • Tao F, Tao YX, Mao P, Zhao C, Li D, Liaw WJ, Raja SN, Johns RA (2003) Intact carrageenan-induced thermal hyperalgesia in mice lacking inducible nitric oxide synthase. Neuroscience 120:847–854

    CAS  PubMed  Google Scholar 

  • Tao F, Tao YX, Zhao C, Dore S, Liaw WJ, Raja SN, Johns RA (2004) Differential roles of neuronal and endothelial nitric oxide synthases during carrageenan-induced inflammatory hyperalgesia. Neuroscience 128:421–430

    CAS  PubMed  Google Scholar 

  • Tegeder I, Schmidtko A, Niederberger E, Ruth P, Geisslinger G (2002) Dual effects of spinally delivered 8-bromo-cyclic guanosine mono-phosphate (8-bromo-cGMP) in formalin-induced nociception in rats. Neurosci Lett 332:146–150

    CAS  PubMed  Google Scholar 

  • Tegeder I, Del Turco D, Schmidtko A, Sausbier M, Feil R, Hofmann F, Deller T, Ruth P, Geisslinger G (2004) Reduced inflammatory hyperalgesia with preservation of acute thermal nociception in mice lacking cGMP-dependent protein kinase I. Proc Natl Acad Sci U S A 101:3253–3257

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tegeder I, Scheving R, Wittig I, Geisslinger G (2011) SNO-ing at the nociceptive synapse? Pharmacol Rev 63:366–389

    CAS  PubMed  Google Scholar 

  • Tiong SY, Polgar E, van Kralingen JC, Watanabe M, Todd AJ (2011) Galanin-immunoreactivity identifies a distinct population of inhibitory interneurons in laminae I-III of the rat spinal cord. Mol Pain 7:36

    PubMed Central  CAS  PubMed  Google Scholar 

  • Valtschanoff JG, Weinberg RJ, Rustioni A, Schmidt HH (1992) Nitric oxide synthase and GABA colocalize in lamina II of rat spinal cord. Neurosci Lett 148:6–10

    CAS  PubMed  Google Scholar 

  • Wu J, Lin Q, Lu Y, Willis WD, Westlund KN (1998) Changes in nitric oxide synthase isoforms in the spinal cord of rat following induction of chronic arthritis. Exp Brain Res 118:457–465

    CAS  PubMed  Google Scholar 

  • Yonehara N, Takemura M, Yoshimura M, Iwase K, Seo HG, Taniguchi N, Shigenaga Y (1997) Nitric oxide in the rat spinal cord in Freund’s adjuvant-induced hyperalgesia. Jpn J Pharmacol 75:327–335

    CAS  PubMed  Google Scholar 

  • Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S, Sato Y, Mori Y (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2:596–607

    CAS  PubMed  Google Scholar 

  • Zhang X, Verge V, Wiesenfeld-Hallin Z, Ju G, Bredt D, Synder SH, Hokfelt T (1993) Nitric oxide synthase-like immunoreactivity in lumbar dorsal root ganglia and spinal cord of rat and monkey and effect of peripheral axotomy. J Comp Neurol 335:563–575

    CAS  PubMed  Google Scholar 

  • Zhang X, Chen Y, Wang C, Huang LY (2007) Neuronal somatic ATP release triggers neuron-satellite glial cell communication in dorsal root ganglia. Proc Natl Acad Sci U S A 104:9864–9869

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang FX, Liu XJ, Gong LQ, Yao JR, Li KC, Li ZY, Lin LB, Lu YJ, Xiao HS, Bao L, Zhang XH, Zhang X (2010) Inhibition of inflammatory pain by activating B-type natriuretic peptide signal pathway in nociceptive sensory neurons. J Neurosci 30:10927–10938

    CAS  PubMed  Google Scholar 

  • Zhuang ZY, Gerner P, Woolf CJ, Ji RR (2005) ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain 114:149–159

    PubMed  Google Scholar 

  • Zhuo M, Meller ST, Gebhart GF (1993) Endogenous nitric oxide is required for tonic cholinergic inhibition of spinal mechanical transmission. Pain 54:71–78

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Related work done in the author’s laboratory was supported by the Deutsche Forschungsgemeinschaft, Witten/Herdecke University, and Doktor Robert Pfleger-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim Schmidtko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmidtko, A. (2015). Nitric Oxide-Mediated Pain Processing in the Spinal Cord. In: Schaible, HG. (eds) Pain Control. Handbook of Experimental Pharmacology, vol 227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46450-2_6

Download citation

Publish with us

Policies and ethics