Skip to main content

The Use of Porous Tantalum for Reconstructing Bone Loss in Orthopedic Surgery

  • Chapter
Advances in Metallic Biomaterials

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 3))

Abstract

Porous tantalum, a novel biomaterial, was approved for use in orthopedic surgery by the Food and Drug Administration (FDA) in 1997. Several preclinical and experimental studies have demonstrated excellent biocompatibility with physical, mechanical, and tissue ingrowth properties conducive for enhanced osseointegration and superior structural integrity. Porous tantalum has high volumetric porosity (75–80 %). The modulus of elasticity of tantalum (3 Gpa) compares favorably to cancellous bone (1.2 GPa) or subchondral bone (2 GPa). Porous tantalum also has a high coefficient of friction with a high resistance to compression (50–80 Mpa) and rotational deformity (40–60 Mpa). Tantalum has been used in a wide array of clinical applications in orthopedics including primary and revision joint replacement, tumor reconstructive surgery, spine fusion, management of osteonecrosis of the femoral head, and foot and ankle surgery. Recent studies have demonstrated excellent clinical and radiographic outcomes, even in the presence of extensive bone loss in hip and knee reconstructive surgeries. Its use in spine surgeries and osteonecrosis of the hip has been associated with mixed clinical results. Further clinical studies are necessary to establish its role and refine its indications in specific orthopedic applications and determine whether the theoretical advantages of porous tantalum can provide long-term biological fixation and stability. This chapter presents a synopsis of the biomaterial properties and preclinical and clinical studies of porous tantalum in orthopedic surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bobyn JD, Tanzer M, Miller JE (1996) Fundamental principles of biologic fixation. In: Morrey BF (ed) Reconstructive surgery of the joints. Churchill Livingstone, New York, pp 75–94

    Google Scholar 

  2. Galante J, Rostoker W, Lueck R, Ray RD (1971) Sintered fiber metal composites as a basis for attachment of implants to bone. J Bone Joint Surg Am 53A:101–114

    Google Scholar 

  3. Pilliar RM, Cameron HU, Macnab I (1975) Porous surface layered prosthetic devices. J Biomed Eng 10:126–131

    Google Scholar 

  4. Pilliar RM (1983) Powder metal-made orthopaedic implants with porous surface for fixation by tissue ingrowth. Clin Orthop 176:42–51

    Google Scholar 

  5. Stein T, Armand C, Bobyn JD, Krygier JJ, Miller J, Brooks CE (1991) Quantitative histological comparison of bone growth into titanium and cobalt-chromium porous coated canine implants. Orthop Trans 15:178

    Google Scholar 

  6. Cohen R (2003) A porous tantalum trabecular metal: basic science. Am J Orthop 31:216–217

    Google Scholar 

  7. Black J (1994) Biological performance of tantalum. Clin Mater 16:167–173

    Article  Google Scholar 

  8. Kato H, Nakamura T, Nishiguchi S, Matsusue Y, Kobayashi M, Miyazaki T et al (2000) Bonding of alkali- and heat-treated tantalum implants to bone. J Biomed Mater Res 53:28–35

    Article  Google Scholar 

  9. Zardiackas LD, Parsell DE, Dillon LD, Mitchell DW, Nunnery LA, Poggie R (2001) Structure, metallurgy, and mechanical properties of a porous tantalum foam. J Biomed Mater Res 58:180–187

    Article  Google Scholar 

  10. Matsuno H, Yokoyama A, Watari F, Motohiro U, Kawasaki T (2001) Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials 22:1253–1262

    Article  Google Scholar 

  11. Zhang Y, Ahn PB, Fitzpatrick DC, Heiner AD, Poggie RA, Brown TD (1999) Interfacial frictional behavior: cancellous bone, cortical bone, and a novel porous tantalum biomaterial. J Musculoskelet Res 3:245–251

    Article  Google Scholar 

  12. Bobyn JD, Toh KK, Hacking SA, Tanzer M, Krygier JJ (1999) Tissue response to porous tantalum acetabular cups: a canine model. J Arthroplasty 14:347–354

    Article  Google Scholar 

  13. Bermudez MD, Carrion FJ, Martinez-Nicolas G, Lopez R (2005) Erosion–corrosion of stainless steels, titanium, tantalum and zirconium. Wear 258:693–700

    Article  Google Scholar 

  14. Barrere F, van der Valk CM, Meijer G, Dalmeijer RA, deGroot K, Layrolle P (2003) Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats. J Biomed Mater Res B 67:655–665

    Article  Google Scholar 

  15. Paganias CG, Tsakotos GA, Koutsostathis SD, Macheras GA (2012) Osseous integration in porous tantalum implants. Indian J Orthop 46(5):505–513

    Article  Google Scholar 

  16. Findlay DM, Welldon K, Atkins GJ, Howie DW, Zannettino AC, Bobyn D (2004) The proliferation and phenotypic expression of human osteoblasts on tantalum metal. Biomaterials 25:2215–2227

    Article  Google Scholar 

  17. Balla VK, Bodhak S, Bose S, Bandyopadhyay A (2010) Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties. Acta Biomater 6(8):3349–3359

    Article  Google Scholar 

  18. Sagomonyants KB, Hakim-Zargar M, Jhaveri A, Aronow MS, Gronowicz G (2011) Porous tantalum stimulates the proliferation and osteogenesis of osteoblasts from elderly female patients. J Orthop Res 29(4):609–616

    Article  Google Scholar 

  19. Hacking SA, Bobyn JD, Toh K, Tanzer M, Krygier JJ (2000) Fibrous tissue ingrowth and attachment to porous tantalum. J Biomed Mater Res 52:631–638

    Article  Google Scholar 

  20. Rahbek O, Kold S, Zippor B, Overgaard S, Soballe K (2005) Particle migration and gap healing around trabecular metal implants. Int Orthop 29(6):368–374

    Article  Google Scholar 

  21. Reach JS Jr, Dickey ID, Zobitz ME (2007) Direct tendon attachment and healing to porous tantalum: an experimental animal study. J Bone Joint Surg Am 89:1000–1009

    Article  Google Scholar 

  22. Pidhorz LE, Urban RM, Jacobs JJ, Sumner DR, Galante JO (1993) A quantitative study of bone and soft tissues in cementless porous-coated acetabular components retrieved at autopsy. J Arthroplasty 8(2):213–225

    Article  Google Scholar 

  23. Jasty M, Bragdon CR, Haire T Jr, Mulroy RD, Harris WH (1993) Comparison of bone ingrowth into cobalt chrome and titanium fiber mesh porous coated cementless canine acetabular components. J Biomed Mater Res 27:639–644

    Article  Google Scholar 

  24. Garbuz DS, Hu Y, Kim WY (2008) Enhanced gap filling and osteoconduction associated with alendronate-calcium phosphate-coated porous tantalum. J Bone Joint Surg Am 90(5):1090–1100

    Article  Google Scholar 

  25. D’Angelo F, Murena L, Campagnolo M, Zatti G, Cherubino P (2008) Analysis of bone ingrowth on a tantalum cup. Indian J Orthop 42(3):275–278

    Article  Google Scholar 

  26. Hanzlik JA, Day JS, Acknowledged Contributors: Ingrowth Retrieval Study Group (2003) Bone ingrowth in well-fixed retrieved porous tantalum implants. J Arthroplasty 28(6):922–927

    Article  Google Scholar 

  27. Sambaziotis C, Lovy AJ, Koller KE et al (2012) Histologic retrieval analysis of a porous tantalum metal implant in an infected primary total knee arthroplasty. J Arthroplasty 27(7):1413.e5–1413.e9

    Google Scholar 

  28. Gruen TA, Poggie RA, Lewallen DG, Hanssen AD, Lewis RJ, O’Keefe TJ et al (2005) Radiographic evaluation of a monoblock acetabular component: a multicenter study with 2- to 5-year results. J Arthroplasty 20:369–378; Tanzer M, Bobyn JD, Krygier JJ, Karabasz D (2008) Histopathologic retrieval analysis of clinically failed porous tantalum osteonecrosis implants. J Bone Joint Surg Am 90(6):1282–1289

    Google Scholar 

  29. Breer S, Hahn M, Kendoff D et al (2012) Histological ex vivo analysis of retrieved human tantalum augmentations. Int Orthop 36(11):2269–2274; Komarasamy B, Vadivelu R, Bruce A, Kershaw C, Davison J (2006) Clinical and radiological outcome following total hip arthroplasty with an uncemented trabecular metal monoblock acetabular cup. Acta Orthop Belg 72:320–325

    Google Scholar 

  30. Bargiotas K, Konstantinos M, Karachalios T, Hantes M, Varitimidis SE (2005) Total hip arthroplasty using trabecular metal acetabular component: middle term results. Paper presented at the 72nd annual meeting of the American Academy of Orthopaedic Surgeons, Washington, DC, February 23–26, 2005

    Google Scholar 

  31. Macheras GA, Papagelopoulos PJ, Kateros K, Kostakos AT, Baltas D, Karachalios TS (2006) Radiological evaluation of the metal-bone interface of a porous tantalum monoblock acetabular component. J Bone Joint Surg (Br) 88:304–309

    Article  Google Scholar 

  32. Mulier M, Rys B, Moke L (2006) Hedrocel trabecular metal monoblock acetabular cups: mid-term results. Acta Orthop Belg 72:326–331

    Google Scholar 

  33. Lewis RJ, O’Keefe TJ, Unger AS (2003) A monoblock trabecular metal acetabulum; two- to five-year results. Paper presented at annual meeting of the American Academy of Orthopaedic Surgeons, Dallas, TX, February 5–8, 2003

    Google Scholar 

  34. Moen TC, Ghate R, Salaz N, Ghodasra J, Stulberg SD (2011) A monoblock porous tantalum acetabular cup has no osteolysis on CT at 10 years. Clin Orthop Relat Res 469(2):382–386

    Article  Google Scholar 

  35. Meneghini RM, Ford KS, McCollough CH, Hanssen AD, Lewallen DG (2010) Bone remodeling around porous metal cementless acetabular components. J Arthroplasty 25(5):741–747

    Article  Google Scholar 

  36. Noiseux NO, Long WJ, Mabry TM, Hanssen AD, Lewallen DG (2013) Uncemented porous tantalum acetabular components: early follow-up and failures in 613 primary total hip arthroplasties. J Arthroplasty 29(3):617–620

    Article  Google Scholar 

  37. Macheras GA, Kateros K, Koutsostathis SD et al (2010) The Trabecular Metal monoblock acetabular component in patients with high congenital hip dislocation: a prospective study. J Bone Joint Surg (Br) 92(5):624–628

    Article  Google Scholar 

  38. Rose PS, Halasy M, Trousdale RT (2006) Preliminary results of tantalum acetabular components for THA after pelvic radiation. Clin Orthop Relat Res 453:195–198

    Article  Google Scholar 

  39. Goodman S, Sastamoinen H, Shasha N, Gross A (2004) Complications of ilio-ischial reconstruction rings in revision total hip arthroplasty. J Arthroplasty 19:436–446

    Article  Google Scholar 

  40. Joshi AB, Lee J, Christensen C (2002) Results for a custom acetabular component for acetabular deficiency. J Arthroplasty 17:643–648

    Article  Google Scholar 

  41. Shinar AA, Harris WH (1997) Bulk structural autogenous grafts and allografts for reconstruction of the acetabulum in total hip arthroplasty. Sixteen-year average follow-up. J Bone Joint Surg Am 79:159–168

    Google Scholar 

  42. Gross AE, Goodman S (2004) The current role of structural grafts and cages in revision arthroplasty of the hip. Clin Orthop Relat Res 429:193–200

    Article  Google Scholar 

  43. Garbuz DS (2004) Revision total hip: a novel modular cementless acetabular system for reconstruction of severe acetabular bone loss. Oper Tech Orthop 14:117–120

    Article  Google Scholar 

  44. Unger AS, Lewis RJ, Gruen T (2005) Evaluation of a porous tantalum uncemented acetabular cup in revision total hip arthroplasty: clinical and radiological results of 60 hips. J Arthroplasty 20:1002–1009

    Article  Google Scholar 

  45. Mardones RM, Talac R, Hanssen AD, Lewallen DG (2005) Use of a porous tantalum revision shell in revision total hip arthroplasty. Paper presented at the 72nd annual meeting of the American Academy of Orthopaedic Surgeons, Washington, DC, February 23–26, 2005

    Google Scholar 

  46. Paprosky WG, O’Rourke M, Sporer SM (2005) The treatment of acetabular bone defects with an associated pelvic discontinuity. Clin Orthop Relat Res 441:216–220

    Article  Google Scholar 

  47. Del Gaizo DJ, Kancherla V, Sporer SM, Paprosky WG (2012) Tantalum augments for Paprosky IIIA defects remain stable at midterm follow-up. Clin Orthop Relat Res 470(2):395–401

    Article  Google Scholar 

  48. Nehme A, Lewallen DG, Hanssen AD (2004) Modular porous metal augments for treatment of severe acetabular bone loss during revision hip arthroplasty. Clin Orthop 429:201–208

    Article  Google Scholar 

  49. Boscaines PJ, Kellet CF, Maury AC et al (2007) Management of periacetabular bone loss in revision hip arthroplasty. Clin Orthop Relat Res 465:159–165

    Google Scholar 

  50. Malkani AL, Price MR, Crawford CH 3rd, Baker DL (2009) Acetabular component revision using a porous tantalum biomaterial: a case series. J Arthroplasty 24(7):1068–1073

    Article  Google Scholar 

  51. Davies JH, Laflamme GY, Delisle J, Fernandes J (2011) Trabecular metal used for major bone loss in acetabular hip revision. J Arthroplasty 26(8):1245–1250

    Article  Google Scholar 

  52. Lachiewicz PF, Soileau ES (2010) Tantalum components in difficult acetabular revisions. Clin Orthop Relat Res 468(2):454–458

    Article  Google Scholar 

  53. Sporer SM, Bottros JJ, Hulst JB, Kancherla VK, Moric M, Paprosky WG (2012) Acetabular distraction: an alternative for severe defects with chronic pelvic discontinuity? Clin Orthop Relat Res 470(11):3156–3163

    Article  Google Scholar 

  54. Springer BD, Berry DJ, Cabanela ME, Hanssen AD, Lewallen DG (2005) Early postoperative transverse pelvic fracture: a new complication related to revision arthroplasty with an uncemented cup. J Bone Joint Surg Am 87(12):2626–2631

    Article  Google Scholar 

  55. Kamath AF, Lee GC, Sheth NP et al (2011) Prospective results of uncemented tantalum monoblock tibia in total knee arthroplasty: minimum 5-year follow-up in patients younger than 55 years. J Arthroplasty 26(8):1390–1395

    Article  Google Scholar 

  56. O’Keefe TJ, Winter S, Lewallen DG, Robertson DD, Poggie RA (2010) Clinical and radiographic evaluation of a monoblock tibial component. J Arthroplasty 25(5):785–792

    Article  Google Scholar 

  57. Fernandez-Fairen M, Hernández-Vaquero D, Murcia A, Torres A, Llopis R (2013) Trabecular metal in total knee arthroplasty associated with higher knee scores: a randomized controlled trial. Clin Orthop Relat Res 471(11):3543–3553

    Article  Google Scholar 

  58. Hayakawa K, Date H, Tsujimura S, Nojiri S, Yamada H, Nakagawa K (2013) Mid-term results of total knee arthroplasty with a porous tantalum monoblock tibial component. Knee 21(1):199–203

    Article  Google Scholar 

  59. Niemeläinen M, Skyttä ET, Remes V, Mäkelä K, Eskelinen A (2013) Total knee arthroplasty with an uncemented trabecular metal tibial component: a registry-based analysis. J Arthroplasty 29(1):57–60

    Article  Google Scholar 

  60. Unger AS, Duggan JP (2011) Midterm results of a porous tantalum monoblock tibia component clinical and radiographic results of 108 knees. J Arthroplasty 26(6):855–860

    Article  Google Scholar 

  61. Minoda Y, Kobayashi A, Ikebuchi M, Iwaki H, Inori F, Nakamura H (2013) Porous Tantalum tibial component prevents periprosthetic loss of bone mineral density after total knee arthroplasty for five years – a matched cohort study. J Arthroplasty 28(10):1760–1764

    Article  Google Scholar 

  62. Radnay CS, Scuderi GR (2006) Management of bone loss: augments, cones, offset stems. Clin Orthop Relat Res 446:83–92

    Article  Google Scholar 

  63. Schmitz HC, Klauser W, Citak M, Al-Khateeb H, Gehrke T, Kendoff D (2013) Three-year follow up utilizing tantalum cones in revision total knee arthroplasty. J Arthroplasty 28(9):1556–1560

    Article  Google Scholar 

  64. Lachiewicz PF, Bolognesi MP, Henderson RA, Soileau ES, Vail TP (2012) Can tantalum cones provide fixation in complex revision knee arthroplasty? Clin Orthop Relat Res 470(1):199–204

    Article  Google Scholar 

  65. Howard JL, Kudera J, Lewallen DG, Hanssen AD (2011) Early results of the use of tantalum femoral cones for revision total knee arthroplasty. J Bone Joint Surg Am 93(5):478–484

    Article  Google Scholar 

  66. Meneghini RM, Lewallen DG, Hanssen AD (2009) Use of porous tantalum metaphyseal cones for severe tibial bone loss during revision total knee replacement. Surgical technique. J Bone Joint Surg Am 91(Suppl 2 Pt 1):131–138

    Google Scholar 

  67. Ries MD, Cabalo A, Bozic KJ, Anderson M (2006) Porous tantalum patellar augmentation: the importance of residual bone stock. Clin Orthop Relat Res 452:166–170

    Article  Google Scholar 

  68. Nelson CL, Lonner JH, Lahiji A, Kim J, Lotke PA (2003) Use of trabecular metal patella for marked patella bone loss during revision total knee arthroplasty. J Arthroplasty 181(7 Suppl 1):37–41

    Article  Google Scholar 

  69. Nasser S, Poggie RA (2004) Revision and salvage patellar arthroplasty using a porous tantalum implant. J Arthroplasty 19(5):562–572

    Article  Google Scholar 

  70. Kamath AF, Gee AO, Nelson CL, Garino JP, Lotke PA, Lee GC (2012) Porous tantalum patellar components in revision total knee arthroplasty minimum 5-year follow-up. J Arthroplasty 27(1):82–87

    Article  Google Scholar 

  71. Chalkin B, Minter J (2005) Limb salvage and abductor reattachment using a custom prosthesis with porous tantalum components. J Arthroplasty 20:127–130

    Article  Google Scholar 

  72. Khan FA, Rose PS, Yanagisawa M, Lewallen DG, Sim FH (2012) Surgical technique: porous tantalum reconstruction for destructive non-primary periacetabular tumors. Clin Orthop Relat Res 470(2):594–601

    Article  Google Scholar 

  73. Holt GE, Christie MJ, Schwartz HS (2009) Trabecular metal endoprosthetic limb salvage reconstruction of the lower limb. J Arthroplasty 24(7):1079–1085

    Article  Google Scholar 

  74. Guo X, Chen M, Feng W (2011) Electrostatic self-assembly of multilayer copolymeric membranes on the surface of porous tantalum implants for sustained release of doxorubicin. Int J Nanomedicine 6:3057–3064

    Google Scholar 

  75. Joglekar SB, Rose PS, Lewallen DG, Sim FH (2012) Tantalum acetabular cups provide secure fixation in THA after pelvic irradiation at minimum 5-year follow-up. Clin Orthop Relat Res 470(2):594–601

    Article  Google Scholar 

  76. Zou X, Li H, Teng X, Xue Q, Egund N, Lind M, Bünger C (2005) Pedicle screw fixation enhances anterior lumbar interbody fusion with porous tantalum cages: an experimental study in pigs. Spine 30(14):E392–E399

    Article  Google Scholar 

  77. Fernández-Fairen M, Murcia A, Torres A, Hernández-Vaquero D, Menzie AM (2012) Is anterior cervical fusion with a porous tantalum implant a cost-effective method to treat cervical disc disease with radiculopathy? Spine 37(20):1734–1741

    Article  Google Scholar 

  78. Kasliwal MK, Baskin DS, Traynelis VC (2013) Failure of porous tantalum cervical interbody fusion devices: two-year results from a prospective, randomized, multicenter clinical study. J Spinal Disord Tech 26(5):239–245

    Article  Google Scholar 

  79. Veillette CJ, Mehdian H, Schemitsch EH, McKee MD (2006) Survivorship analysis and radiographic outcome following tantalum rod insertion for osteonecrosis of the femoral head. J Bone Joint Surg Am 88(Suppl 3):48–55

    Article  Google Scholar 

  80. Zhang Y, Li L, Shi ZJ, Wang J, Li ZH (2013) Porous tantalum rod implant is an effective and safe choice for early-stage femoral head necrosis: a meta-analysis of clinical trials. Eur J Orthop Surg Traumatol 23(2):211–217

    Article  Google Scholar 

  81. Frigg A, Dougall H, Boyd S, Nigg B (2010) Can porous tantalum be used to achieve ankle and subtalar arthrodesis? A pilot study. Clin Orthop Relat Res 468(1):209–216

    Article  Google Scholar 

  82. Sagherian BH, Claridge RJ (2012) Porous tantalum as a structural graft in foot and ankle surgery. Foot Ankle Int 33(3):179–189

    Article  Google Scholar 

  83. Gordon WJ, Conzemius MG, Birdsall E, Wannemuehler Y, Mallapragada S, Lewallen DG et al (2005) Chondroconductive potential of tantalum trabecular metal. J Biomed Mater Res B Appl Biomater 75:229–233

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart B. Goodman MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Patil, N., Goodman, S.B. (2015). The Use of Porous Tantalum for Reconstructing Bone Loss in Orthopedic Surgery. In: Niinomi, M., Narushima, T., Nakai, M. (eds) Advances in Metallic Biomaterials. Springer Series in Biomaterials Science and Engineering, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46836-4_10

Download citation

Publish with us

Policies and ethics