Skip to main content
  • 1388 Accesses

Abstract

As the result of revolution of modern business management mode, the theory and method of supply chain management is also the most important basic theory in the field of management and the frontier of management science. Chopra et al. (Manag Sci 50(1):8–14, 2004 [1]) in Management Science wrote: “Operation and supply chain are currently the most critical themes in management science and improving the theoretical and practical evolution of management science.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chopra S, Lovejoy W, Yano C (2004) Five decades of operations management and the prospects ahead. Manage Sci 50(1):8–14

    Google Scholar 

  2. Houlihan JB (1985) International supply chain management. Int J Phy Distrib Mater Manag 15(1):22–38

    Google Scholar 

  3. Stevens J (1989) Integrating the supply chain. Int J Phys Distrib Mater Manag 19(8):3–8

    Google Scholar 

  4. Saunders MJ (1995) Chains, pipelines, networks and value stream: the role, nature and value of such metaphors in forming perceptions of the task of purchasing and supply management. In: First worldwide research symposium on purchasing and supply chain management. Tempe, Arizona, USA, pp 476–485, Mar 1995

    Google Scholar 

  5. Ellram LM (1991) Supply chain management: the industrial organization perspective. Int J Phys Distrib Logistics Manag 21(1):13–22

    Google Scholar 

  6. Lee HL, Ng SM (1997) Introduction to the special issue on global supply chain management. Prod Oper Manag 6(3):191–192

    Google Scholar 

  7. Lee HL, Billington C (1992) Managing supply chain inventory: pitfalls and opportunities. Sloan Manag Rev 33(3):65–73

    Google Scholar 

  8. Christopher M (2012) Logistics and supply chain management. Pearson, UK

    Google Scholar 

  9. Simchi-Levi D, Kaminsky P, Simchi-Levi E (2003) Designing and managing the supply chain. Irwin/McGraw-Hill, San Francisco

    Google Scholar 

  10. Ma SH, Lin Y, Chen ZX (2005) Supply chain management. Machinery Industry Press, Beijing

    Google Scholar 

  11. Stadtler H (2005) Supply chain management and advanced planning-basics, overview and challenges. Eur J Oper Res 163(3):575–588

    Google Scholar 

  12. Kannan VR, Handfield RB (1998) Supply chain management: supplier performance and firm performance. Int J Purchasing Mater Manag 34(3):2–9

    Google Scholar 

  13. Berry D, Towill DR, Wadsley N (1994) Supply chain management in the electronics product industry. Int J Phys Distrib Mater Manag 24(10):20–32

    Google Scholar 

  14. Kopczak LR (1997) Logistics partnership and supply chain restructuring: survey results from the US computer industry. Prod Oper Manag 6(3):191–192

    Google Scholar 

  15. Chopra S, Meindl P (2001) Supply chain management: strategy, planning, and operation. Tsinghua University Press, Beijing

    Google Scholar 

  16. Huang XY (2007) Supply chain operations—coordination, optimization and control. Science Press, Beijing

    Google Scholar 

  17. Huang XY (2004) Supply chain model and optimization. Science Press, Beijing

    Google Scholar 

  18. Zhang T, Sun LY (2005) Supply chain uncertainty management: technologies and strategies. Tsinghua University Press, Beijing

    Google Scholar 

  19. Verity JW (1996) Clearing the cobwebs from the stockroom. Bus Week 21:140

    Google Scholar 

  20. Bendiner J (1998) Understanding supply chain optimization: from “what if” to what’s best. APICS Perform Advantage 8:34–39

    Google Scholar 

  21. Liu BD, Peng J (2005) Uncertainty theory tutorial. Tsinghua University Press, Beijing

    Google Scholar 

  22. Liu BD (2007) Uncertainty theory, 2nd edn. Springer, Berlin

    Google Scholar 

  23. Li CL, Luo YF (2003) Uncertainty of supply chain management research. Sci Technol Prog Policy 10:84–86

    Google Scholar 

  24. Lee HL, Billington C (1995) The evolution of supply chain management models and practice at Hewllet-Packard. Interfaces 25(5):42–63

    Google Scholar 

  25. Liu BD, Zhao RQ (1998) Stochastic programming and fuzzy programming. Tsinghua University Press, Beijing

    Google Scholar 

  26. Liu BD, Zhao RQ, Wang G (2003) Uncertain programming and applications. Tsinghua University Press, Beijing

    Google Scholar 

  27. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Google Scholar 

  28. Bellman RE, Zadeh LA (1970) Decision making in a fuzzy environment. Manage Sci 17(4):141–164

    Google Scholar 

  29. Liu B, Liu YK (2002) Expected value of fuzzy variable and fuzzy expected value models. IEEE Transact Fuzzy Syst 10(4):445–450

    Google Scholar 

  30. Li X, Liu B (2006) A sufficient and necessary condition for credibility measures. Int J Uncertainty Fuzziness Knowl Based Syst 14(5):527–535

    Google Scholar 

  31. Zadeh LA (1999) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst 100:9–34

    Google Scholar 

  32. Liu B (2009) Theory and practice of uncertain programming, 2nd edn. Springer, Berlin

    Google Scholar 

  33. Fortemps P, Roubens M (1996) Ranking and defuzzification methods based on area compensation. Fuzzy Sets Syst 82(3):319–330

    Google Scholar 

  34. Kwakernaak H (1978) Fuzzy random variables–I: definitions and theorems. Inf Sci 15(1):1–29

    Google Scholar 

  35. Kwakernaak H (1979) Fuzzy random variables–II: algorithms and examples for the discrete case. Inf Sci 17(3):253–278

    Google Scholar 

  36. Puri ML, Ralescu DA (1983) Differentials of fuzzy functions. J Math Anal Appl 91(2):552–558

    Google Scholar 

  37. Puri ML, Ralescu DA (1986) Fuzzy random variables. J Math Anal Appl 114(2):409–422

    Google Scholar 

  38. Kruse R, Meyer KD (1987) Statistics with vague data. Springer Science & Business Media, Berlin

    Google Scholar 

  39. Liu YK, Liu B (2003) Fuzzy random variables: a scalar expected value operator. Fuzzy Optim Decis Making 2(2):143–160

    Google Scholar 

  40. Cheung RKM, Powell WB (1996) Models and algorithms for distribution problems with uncertain demands. Transp Sci 30(1):43–59

    Google Scholar 

  41. Zak YA, Frank RY (1975) Optimal planning of level of initial reserves and funds for material resources. Avtomatika i Telemekhanika 36(9):99–107

    Google Scholar 

  42. Cohen MA, Moon S (1991) An integrated Plant loading model with economies of scale and scope. Eur J Oper Res 50(3):266–279

    Google Scholar 

  43. Blumenfeld DE, Burns LD, Daganzo CF (1991) Synchronizing production and transportation schedules. Transp Res Part B Methodol 25(1):23–37

    Google Scholar 

  44. Bhatnagar R, Chandra P, Goyal SK (1993) Models for multi-plant coordination. Eur J Oper Res 67(2):141–160

    Google Scholar 

  45. Chien TW (1993) Determining profit-maximizing product/shipping policies in a one-to-one direct shipping, stochastic demand environment. Eur J Oper Res 64(1):83–102

    Google Scholar 

  46. Chandra P, Fisher ML (1994) Coordination of production and distribution planning. Eur J Oper Res 72(3):503–517

    Google Scholar 

  47. Arntzen BC, Brown GG, Harrison TP et al (1995) Global supply chain management at digital equipment corporation. Interfaces 25(1):69–93

    Google Scholar 

  48. Thomas DJ, Griffin PM (1996) Coordinated supply chain management. Eur J Oper Res 94(1):1–15

    Google Scholar 

  49. Cheung RKM, Powell WB (1996) Models and algorithms for distribution problems with uncertain demands. Transp Sci 30(1):43–59

    Google Scholar 

  50. Hill RM (1997) The single-vendor single-buyer integrated production inventory model with a generalized policy. Eur J Oper Res 97(3):493–499

    Google Scholar 

  51. Beamon BM (1998) Supply chain design and analysis: models and methods. Int J Prod Econ 55(3):281–294

    Google Scholar 

  52. Fumero F, Vercellis C (1999) Synchronized development of production, inventory and distribution schedules. Transp Sci 33(3):330–340

    Google Scholar 

  53. Escudero LF, Galindo E, Garcıa G et al (1999) Schumann, a modeling framework for supply chain management under uncertainty. Eur J Oper Res 119(1):14–34

    Google Scholar 

  54. Von Lanzenauer CH, Pilz-Glombik K (2002) Coordinating supply chain decisions: an optimization model. OR Spectrum 24(1):59–78

    Google Scholar 

  55. Bredstrom D, Ronnqvist M (2002) Integrated production planning and route scheduling in pulp mill industry. In: Proceedings of the 35th annual Hawaii international conference on system sciences, HICSS, pp 1606–1614. IEEE, Jan 2002

    Google Scholar 

  56. Gupta A, Maranas CD (2003) Managing demand uncertainty in supply chain planning. Comput Chem Eng 27(8):1219–1227

    Google Scholar 

  57. Luh PB, Ni M, Chen H et al (2003) Price-based approach for activity coordination in a supply network. IEEE Trans Robot Autom 19(2):335–346

    Google Scholar 

  58. Pibernik R, Sucky E (2006) Centralised and decentralised supply chain planning. Int J Integr Supply Manag 2(1):6–27

    Google Scholar 

  59. Peidro D, Mula J, Poler R et al (2009) Quantitative models for supply chain planning under uncertainty: a review. Int J Adv Manuf Techno 43(3–4):400–420

    Google Scholar 

  60. Chen ZH, Wang YF, Ma SH (2000) Management mechanism of supply chain-production planning and control. Ind Eng Manag 5(2):22–25

    Google Scholar 

  61. Zhou JH, Wang DW, Xu Y (2001) Soft computing JIT production planning supply chain of multi-location manufacturing system. Control Dec 16(6):894–897

    Google Scholar 

  62. Zhou JH, Wang DW (2001) Production planning model for supply chain for multi-location plants and distributors. Inf Control 30(2):169–172

    Google Scholar 

  63. Hou KH, Hu ZW (2002) Supply chain planning in supply chain management. Ind Eng J 5(5):21–25

    Google Scholar 

  64. Sun HJ, Gao ZY (2002) Production planning model of two-echelon distribution network in supply chain based on distributed plant. Chin J Manag Sci 10(6):40–43

    Google Scholar 

  65. Yao JM, Zhou GH (2003) Analysis of supply chain optimization planning and scheduling in mass customization. J Manag Sci China 6(5):58–64

    Google Scholar 

  66. Yang HH, Wu ZM (2003) Two-level GA-based approach to the capacitated lot sizing problem for multi-plants supply chain. J Shanghai Jiaotong Univ 37(4):473–478

    Google Scholar 

  67. Zhu BL, Yu HB, Huang XY (2004) Collaboration planning modeling based on game theory for supply chain. J Northeast Univ (Nat Sci) 25(7):703–706

    Google Scholar 

  68. Li JX, Tang LX, Wu HJ (2004) Modeling of the coordinated production planning of a two-stage mineral industry supply Chain. J Northeast Univ (Nat Sci) 25(4):352–355

    Google Scholar 

  69. Li JX, Tang LX, Wu HJ (2005) Collaborative production planning in a three stage steel supply chain. Comput Integr Manuf Syst 11(3):375–380

    Google Scholar 

  70. Chen HL, Zhang J, Ma DZ (2004) Research on supply chain collaborative based on cost and time balance optimization. Comput Integr Manuf Syst 10(12):1518–1522

    Google Scholar 

  71. Ma B, Song FG (2004) The design of supply chain-based garment enterprise integrated planning management system. Comput Syst Appl 9:47–49

    Google Scholar 

  72. Cheng HN, Xiang SG, Yang X et al (2004) Supply chain planning model under uncertainty. Comput Appl Chem 21(1):97–102

    Google Scholar 

  73. Yang WS, Ma SH, Li L (2004) Coordinated planning model based on response time of supply chain. Forecasting 23(5):52–56

    Google Scholar 

  74. Lin ZW, Lin XH, Ding QL (2004) The research of production planning and control for supply chain. Ind Eng 7(4):22–25

    Google Scholar 

  75. Ge J, Li YF, Xia GP (2005) Research on global supply chain production planning under uncertain environment. Comput Integr Manuf Syst 11(8):1120–1126

    Google Scholar 

  76. Zhou W, Jin YH (2005) Coordination method for multi-plant supply chain planning optimization based on augmented Lagrangian relaxation. J Tsinghua Univ (Nat Sci) 45(10):1324–1327

    Google Scholar 

  77. Jiang M (2005) The study of supply chain enterprises’ production planning system resolution model. Mech Des Manuf 12:162–164

    Google Scholar 

  78. Chen ZX (2005) Influence of supply chain information uncertainty on production planning and improving methods. Group Technol Prod Modernization 22(4):10–13

    Google Scholar 

  79. Li YF, Xia GP, Yang YX et al (2005) Global supply chain tactical planning model based on fuzzy stochastic expected value programming. Syst Eng Theory Pract 8:1–9

    Google Scholar 

  80. Wang HJ, Ma SH, Zhao Y (2005) Prototype software system of production planning for mass customization in the supply chain. Ind Eng Manag 10(3):78–81

    Google Scholar 

  81. Yu HF, Wang DW (2005) Food-chain algorithm and application to supply-chain planning. J Syst Simul 17(5):1195–1199

    Google Scholar 

  82. Nie LS, Xu XF, Zhan DC (2006) Collaborative planning in supply chains based on Lagrangian relaxation and genetic algorithm. Comput Integr Manuf Syst 12(11):1869–1875

    Google Scholar 

  83. Kong LF, Luo TD (2006) Agent-based distributed negotiation algorithm for dynamic scheduling problem. Comput Integr Manuf Syst 12(7):1128–1133

    Google Scholar 

  84. Du SF, Liang ML (2006) GBOM-based Supply chain network and its integrated production planning model with capacity constraints. Chin J Manag 3(2):143–147

    Google Scholar 

  85. Su S, Zhan DC, Xu XF (2007) Manufacturing supply chain planning based on extended state task network. J Softw 18(7):1626–1638

    Google Scholar 

  86. Ma SH, Shen W (2007) A planning model and analysis for logistics capability in a multi-stage supply chain. Chin J Manag Sci 15(4):83–88

    Google Scholar 

  87. Shen W, Ma SH (2007) A scheduling model for logistics capability in a time-based multi-stage supply chain. Oper Res Manag Sci 16(3):20–25

    Google Scholar 

  88. Fang XH, Wang WJ, Tang BY (2007) New technology for supply chain integration—collaborative planning forecasting and replenishing. J Donghua Univ (Nat Sci) 33(2):191–195

    Google Scholar 

  89. Ji XL, Zhu HM, Wang NS (2004) Study on three-stage supply chain integrated planning based on GA. J Nanjing Univ Aeronaut Astronaut 36(5):550–555

    Google Scholar 

  90. Xiao L (2007) Distributed model for the process of supply chain logistic plan based on integration of knowledge context. Sci Technol Progr Policy 24(7):132–135

    Google Scholar 

  91. Li JZ, Liu CL (2007) Study on mass customization planning model of cluster supply chain. Industr Eng Manag 12(3):40–46

    Google Scholar 

  92. Zhao JH, Bai JD, Wei XF et al (2007) Fuzzy supply chain problem for lot sizing production planning. Syst Eng Electr 29(8):1299–1304

    Google Scholar 

  93. Cai ZY, Xiao RB, Tan Y et al (2008) Fuzzy adaptive production plan dispatching of cycle supply chain under uncertainty conditions. Control Dec 23(5):525–529

    Google Scholar 

  94. Fu YY, Pan XH (2008) Optimization of multi-part inventory control and production lot under fuzzy uncertainty. J Zhejiang Univ (Eng Sci) 42(6): 1046–1050

    Google Scholar 

  95. Shao XF, Ji JH (2008) Research on pricing and capacity planning coordination based on reimbursement contracts. Chin J Manag Sci 16(4):62–68

    Google Scholar 

  96. Bitran GR, Yanasse HH (1982) Computational complexity of the capacitated lot size problem. Manage Sci 28(10):1174–1186

    Google Scholar 

  97. Chen WH, Thizy JM (1990) Analysis of relaxations for the multi-item capacitated lot sizing problem. Ann Oper Res 26(1):29–72

    Google Scholar 

  98. Karimi B, Ghomi SF, Wilson JM (2003) The capacitated lot sizing problem:a review of models and algorithms. Omega 31(5):365–378

    Google Scholar 

  99. Drexl A, Kimms A (1997) Lot sizing and scheduling-survey and extension. Eur J Oper Res 99(2):221–235

    Google Scholar 

  100. Barany I, Van Roy T, Wolsey LA (1984) Uncapacitated lot-sizing: the convex hull of solutions. Springer, Berlin, pp 32–43

    Google Scholar 

  101. Karni R, Roll Y (1982) A heuristic algorithm for the multi-item lot sizing problem with capacity constraints. IIE Trans 14(4):249–256

    Google Scholar 

  102. Guo QS, Yang XY, Wang XG (2006) System modeling. National Defense Industry Press, Beijing

    Google Scholar 

  103. Minsky M, Papert SA (1969) Perceptrons. MIT Press, Cambridge

    Google Scholar 

  104. Cybenko G (1989) Approximations by superpositions of a sigmoidal function. Math Control Signals Systems 2(4):303–314

    Google Scholar 

  105. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366

    Google Scholar 

  106. Liu PY (2003) Regular fuzzy neural network as universal approximator of fuzzy valued function. Control and Decision 18(1):19–28

    Google Scholar 

  107. Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press, Michigan

    Google Scholar 

  108. Xuan GN, Cheng RW (2004) Genetic algorithms and engineering optimization. Tsinghua University Press, Beijing

    Google Scholar 

  109. Koza JR (1992) Genetic programming. MIT Press, Cambridge

    Google Scholar 

  110. Koza JR, Rice JP (1994) Genetic programming, 2nd edn. MIT Press, Cambridge

    Google Scholar 

  111. Michalewicz Z (1996) Genetic algorithms + data structures = evolution programs, 3rd edn. Springer, Berlin

    Google Scholar 

  112. Raman S, Patnaik LM (1997) Optimization via evolutionary processes. Adv Comput 45:155–196

    Google Scholar 

  113. Tzeng HW, Chen JL, Chen NK (1999) Traffic grooming in WDM networks using genetic algorithm. In: IEEE international conference on systems, man, and cybernetics. IEEE SMC’99 Conference Proceedings, vol 1. IEEE, pp 1003–1006

    Google Scholar 

  114. Golberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison Wesley, Boston

    Google Scholar 

  115. Chen CW, Dong SH, Ding WY (2006) Optimization of multi-stage production planning in ERW pipe manufacturing. J Univ Sci Technol Beijing 28(7):691–695

    Google Scholar 

  116. Vasconcelos JA, Ramirez JA, Takahashi RHC et al (2001) Improvements in genetic algorithms. IEEE Trans Magn 37(5):3414–3417

    Google Scholar 

  117. Wang DW, Fang SC (1996) Just-in-time production planning with semi-infinite programming model and genetic algorithm. Control Deci 11(4):446–451

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juping Shao .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shao, J., Sun, Y., Noche, B. (2015). Literature Review. In: Optimization of Integrated Supply Chain Planning under Multiple Uncertainty. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47250-7_2

Download citation

Publish with us

Policies and ethics