Skip to main content

Demineralization and Remineralization

  • Chapter
Dental Caries

Abstract

Dental caries is caused by an imbalance between protective and pathologic factors such that the process of demineralization of tooth structure exceeds the ability to remineralized tooth structure. Different kinds of models have been widely used to study de-/remineralization process of dental hard tissue, including pH-cycling models, in vitro biofilm models, animal models, and in situ models. Though traditional methods have been proven to be effective to inhibit the demineralization and enhance remineralization of enamel and dentine, more novel agents are developed to combat dental caries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Featherstone JD. The continuum of dental caries – evidence for a dynamic disease process. J Dent Res. 2004;83 Spec No C:C39–42.

    Google Scholar 

  2. Featherstone JD. Dental caries: a dynamic disease process. Aust Dent J. 2008;53(3):286–91.

    Article  PubMed  Google Scholar 

  3. Hannig M, Hannig C. Nanomaterials in preventive dentistry. Nat Nanotechnol. 2010;5(8):565–9.

    Article  PubMed  Google Scholar 

  4. Nelson DG, Featherstone JD. Preparation, analysis, and characterization of carbonated apatites. Calcif Tissue Int. 1982;34 Suppl 2:S69–81.

    PubMed  Google Scholar 

  5. Nelson DG, Featherstone JD, Duncan JF, Cutress TW. Effect of carbonate and fluoride on the dissolution behaviour of synthetic apatites. Caries Res. 1983;17(3):200–11.

    Article  PubMed  Google Scholar 

  6. Robinson C, Shore RC, Brookes SJ, Strafford S, Wood SR, Kirkham J. The chemistry of enamel caries. Crit Rev Oral Biol Med. 2000;11(4):481–95.

    Article  PubMed  Google Scholar 

  7. ten Cate JM, Featherstone JD. Mechanistic aspects of the interactions between fluoride and dental enamel. Crit Rev Oral Biol Med. 1991;2(3):283–96.

    PubMed  Google Scholar 

  8. Cochrane NJ, Zero DT, Reynolds EC. Remineralization models. Adv Dent Res. 2012;24(2):129–32.

    Article  PubMed  Google Scholar 

  9. White DJ. The application of in vitro models to research on demineralization and remineralization of the teeth. Adv Dent Res. 1995;9(3):175–93; discussion 94–7.

    PubMed  Google Scholar 

  10. Tschoppe P, Wolf O, Eichhorn M, Martus P, Kielbassa AM. Design of a randomized controlled double-blind crossover clinical trial to assess the effects of saliva substitutes on bovine enamel and dentin in situ. BMC Oral Health. 2011;11:13.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Moron BM, Comar LP, Wiegand A, Buchalla W, Yu H, Buzalaf MA, et al. Different protocols to produce artificial dentine carious lesions in vitro and in situ: hardness and mineral content correlation. Caries Res. 2013;47(2):162–70.

    Article  PubMed  Google Scholar 

  12. Spiguel MH, Tovo MF, Kramer PF, Franco KS, Alves KM, Delbem AC. Evaluation of laser fluorescence in the monitoring of the initial stage of the de-/remineralization process: an in vitro and in situ study. Caries Res. 2009;43(4):302–7.

    Article  PubMed  Google Scholar 

  13. ten Cate JM, Duijsters PP. Alternating demineralization and remineralization of artificial enamel lesions. Caries Res. 1982;16(3):201–10.

    Article  PubMed  Google Scholar 

  14. Buzalaf MA, Hannas AR, Magalhaes AC, Rios D, Honorio HM, Delbem AC. pH-cycling models for in vitro evaluation of the efficacy of fluoridated dentifrices for caries control: strengths and limitations. J Appl Oral Sci. 2010;18(4):316–34.

    PubMed  Google Scholar 

  15. McBain AJ. Chapter 4: In vitro biofilm models: an overview. Adv Appl Microbiol. 2009;69:99–132.

    Article  PubMed  Google Scholar 

  16. Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev. 1986;50(4):353–80.

    PubMed Central  PubMed  Google Scholar 

  17. Ccahuana-Vasquez RA, Cury JA. S. mutans biofilm model to evaluate antimicrobial substances and enamel demineralization. Braz Oral Res. 2010;24(2):135–41.

    Article  PubMed  Google Scholar 

  18. Silva TC, Pereira AF, Exterkate RA, Bagnato VS, Buzalaf MA, Machado MA, et al. Application of an active attachment model as a high-throughput demineralization biofilm model. J Dent. 2012;40(1):41–7.

    Article  PubMed  Google Scholar 

  19. Giacaman RA, Munoz MJ, Ccahuana-Vasquez RA, Munoz-Sandoval C, Cury JA. Effect of fluoridated milk on enamel and root dentin demineralization evaluated by a biofilm caries model. Caries Res. 2012;46(5):460–6.

    Article  PubMed  Google Scholar 

  20. Hayati F, Okada A, Kitasako Y, Tagami J, Matin K. An artificial biofilm induced secondary caries model for in vitro studies. Aust Dent J. 2011;56(1):40–7.

    Article  PubMed  Google Scholar 

  21. Thurnheer T, Giertsen E, Gmur R, Guggenheim B. Cariogenicity of soluble starch in oral in vitro biofilm and experimental rat caries studies: a comparison. J Appl Microbiol. 2008;105(3):829–36.

    Article  PubMed  Google Scholar 

  22. van de Sande FH, Azevedo MS, Lund RG, Huysmans MC, Cenci MS. An in vitro biofilm model for enamel demineralization and antimicrobial dose–response studies. Biofouling. 2011;27(9):1057–63.

    Article  PubMed  Google Scholar 

  23. Cenci MS, Pereira-Cenci T, Cury JA, Ten Cate JM. Relationship between gap size and dentine secondary caries formation assessed in a microcosm biofilm model. Caries Res. 2009;43(2):97–102.

    Article  PubMed  Google Scholar 

  24. Cheng L, Exterkate RA, Zhou X, Li J, ten Cate JM. Effect of Galla chinensis on growth and metabolism of microcosm biofilms. Caries Res. 2011;45(2):87–92.

    Article  PubMed  Google Scholar 

  25. Guggenheim B, Guggenheim M, Gmur R, Giertsen E, Thurnheer T. Application of the Zurich biofilm model to problems of cariology. Caries Res. 2004;38(3):212–22.

    Article  PubMed  Google Scholar 

  26. Zaura E, Buijs MJ, Hoogenkamp MA, Ciric L, Papetti A, Signoretto C, et al. The effects of fractions from shiitake mushroom on composition and cariogenicity of dental plaque microcosms in an in vitro caries model. J Biomed Biotechnol. 2011;2011:135034.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Deng DM, ten Cate JM. Demineralization of dentin by Streptococcus mutans biofilms grown in the constant depth film fermentor. Caries Res. 2004;38(1):54–61.

    Article  PubMed  Google Scholar 

  28. Zero DT. In situ caries models. Adv Dent Res. 1995;9(3):214–30; discussion 31–4.

    PubMed  Google Scholar 

  29. Stookey GK, Warrick JM, Miller LL, Greene AL. Animal caries models for evaluating fluoride dentifrices. Adv Dent Res. 1995;9(3):198–207; discussion 208–13.

    PubMed  Google Scholar 

  30. Clasen AB, Ogaard B. Experimental intra-oral caries models in fluoride research. Acta Odontol Scand. 1999;57(6):334–41.

    Article  PubMed  Google Scholar 

  31. Nakata K, Nikaido T, Nakashima S, Nango N, Tagami J. An approach to normalizing micro-CT depth profiles of mineral density for monitoring enamel remineralization progress. Dent Mater J. 2012;31(4):533–40.

    Article  PubMed  Google Scholar 

  32. Arends J, ten Bosch JJ. Demineralization and remineralization evaluation techniques. J Dent Res. 1992;71 Spec No:924–8.

    Google Scholar 

  33. Anderson P, Levinkind M, Elliot JC. Scanning microradiographic studies of rates of in vitro demineralization in human and bovine dental enamel. Arch Oral Biol. 1998;43(8):649–56.

    Article  PubMed  Google Scholar 

  34. Bertassoni LE, Habelitz S, Pugach M, Soares PC, Marshall SJ, Marshall Jr GW. Evaluation of surface structural and mechanical changes following remineralization of dentin. Scanning. 2010;32(5):312–9.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Barbour ME, Rees JS. The laboratory assessment of enamel erosion: a review. J Dent. 2004;32(8):591–602.

    Article  PubMed  Google Scholar 

  36. Herkstroter FM, Witjes M, Ruben J, Arends J. Time dependency of microhardness indentations in human and bovine dentine compared with human enamel. Caries Res. 1989;23(5):342–4.

    Article  PubMed  Google Scholar 

  37. Cheng L, ten Cate JM. Effect of Galla chinensis on the in vitro remineralization of advanced enamel lesions. Int J Oral Sci. 2010;2(1):15–20.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Neves Ade A, Coutinho E, Vivan Cardoso M, Jaecques SV, Van Meerbeek B. Micro-CT based quantitative evaluation of caries excavation. Dent Mater. 2010;26(6):579–88.

    Article  PubMed  Google Scholar 

  39. Schwass DR, Swain MV, Purton DG, Leichter JW. A system of calibrating microtomography for use in caries research. Caries Res. 2009;43(4):314–21.

    Article  PubMed  Google Scholar 

  40. Berger SB, Pavan S, Dos Santos PH, Giannini M, Bedran-Russo AK. Effect of bleaching on sound enamel and with early artificial caries lesions using confocal laser microscopy. Braz Dent J. 2012;23(2):110–5.

    Article  PubMed  Google Scholar 

  41. Xie Q, Bedran-Russo AK, Wu CD. In vitro remineralization effects of grape seed extract on artificial root caries. J Dent. 2008;36(11):900–6.

    Article  PubMed Central  PubMed  Google Scholar 

  42. de Carvalho FG, de Fucio SB, Sinhoreti MA, Correr-Sobrinho L, Puppin-Rontani RM. Confocal laser scanning microscopic analysis of the depth of dentin caries-like lesions in primary and permanent teeth. Braz Dent J. 2008;19(2):139–44.

    Article  PubMed  Google Scholar 

  43. Banerjee A, Boyde A. Autofluorescence and mineral content of carious dentine: scanning optical and backscattered electron microscopic studies. Caries Res. 1998;32(3):219–26.

    Article  PubMed  Google Scholar 

  44. Gonzalez-Cabezas C, Fontana M, Dunipace AJ, Li Y, Fischer GM, Proskin HM, et al. Measurement of enamel remineralization using microradiography and confocal microscopy. A correlational study. Caries Res. 1998;32(5):385–92.

    Article  PubMed  Google Scholar 

  45. Ando M, Hall AF, Eckert GJ, Schemehorn BR, Analoui M, Stookey GK. Relative ability of laser fluorescence techniques to quantitate early mineral loss in vitro. Caries Res. 1997;31(2):125–31.

    Article  PubMed  Google Scholar 

  46. Lagerweij M, van der Veen M, Ando M, Lukantsova L, Stookey G. The validity and repeatability of three light-induced fluorescence systems: an in vitro study. Caries Res. 1999;33(3):220–6.

    Article  PubMed  Google Scholar 

  47. Pretty IA, Pender N, Edgar WM, Higham SM. The in vitro detection of early enamel de- and re-mineralization adjacent to bonded orthodontic cleats using quantitative light-induced fluorescence. Eur J Orthod. 2003;25(3):217–23.

    Article  PubMed  Google Scholar 

  48. Sowa MG, Popescu DP, Friesen JR, Hewko MD, Choo-Smith LP. A comparison of methods using optical coherence tomography to detect demineralized regions in teeth. J Biophotonics. 2011;4(11–12):814–23.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.

    Article  PubMed  Google Scholar 

  50. Amaechi BT, Higham SM, Podoleanu AG, Rogers JA, Jackson DA. Use of optical coherence tomography for assessment of dental caries: quantitative procedure. J Oral Rehabil. 2001;28(12):1092–3.

    Article  PubMed  Google Scholar 

  51. Buzalaf MA, Pessan JP, Honorio HM, ten Cate JM. Mechanisms of action of fluoride for caries control. Monogr Oral Sci. 2011;22:97–114.

    Article  PubMed  Google Scholar 

  52. Ripa LW. A critique of topical fluoride methods (dentifrices, mouthrinses, operator-, and self-applied gels) in an era of decreased caries and increased fluorosis prevalence. J Public Health Dent. 1991;51(1):23–41.

    Article  PubMed  Google Scholar 

  53. ten Cate JM. Review on fluoride, with special emphasis on calcium fluoride mechanisms in caries prevention. Eur J Oral Sci. 1997;105(5 Pt 2):461–5.

    Article  PubMed  Google Scholar 

  54. ten Cate JM, Duijsters PP. Influence of fluoride in solution on tooth demineralization. II. Microradiographic data. Caries Res. 1983;17(6):513–9.

    Article  PubMed  Google Scholar 

  55. ten Cate JM, Duijsters PP. Influence of fluoride in solution on tooth demineralization. I. Chemical data. Caries Res. 1983;17(3):193–9.

    Article  PubMed  Google Scholar 

  56. Takagi S, Liao H, Chow LC. Effect of tooth-bound fluoride on enamel demineralization/remineralization in vitro. Caries Res. 2000;34(4):281–8.

    Article  PubMed  Google Scholar 

  57. Arends J, Christoffersen J. The nature of early caries lesions in enamel. J Dent Res. 1986;65(1):2–11.

    Article  PubMed  Google Scholar 

  58. Ogaard B, Rolla G, Ruben J, Dijkman T, Arends J. Microradiographic study of demineralization of shark enamel in a human caries model. Scand J Dent Res. 1988;96(3):209–11.

    PubMed  Google Scholar 

  59. Reynolds EC, Cai F, Cochrane NJ, Shen P, Walker GD, Morgan MV, et al. Fluoride and casein phosphopeptide-amorphous calcium phosphate. J Dent Res. 2008;87(4):344–8.

    Article  PubMed  Google Scholar 

  60. Levine RS, Rowles SL. Further studies on the remineralization of human carious dentine in vitro. Arch Oral Biol. 1973;18(11):1351–6.

    Article  PubMed  Google Scholar 

  61. Klont B, ten Cate JM. Remineralization of bovine incisor root lesions in vitro: the role of the collagenous matrix. Caries Res. 1991;25(1):39–45.

    Article  PubMed  Google Scholar 

  62. Baysan A, Lynch E, Ellwood R, Davies R, Petersson L, Borsboom P. Reversal of primary root caries using dentifrices containing 5,000 and 1,100 ppm fluoride. Caries Res. 2001;35(1):41–6.

    Article  PubMed  Google Scholar 

  63. Koulourides T, Cueto H, Pigman W. Rehardening of softened enamel surfaces of human teeth by solutions of calcium phosphates. Nature. 1961;189:226–7.

    Article  PubMed  Google Scholar 

  64. Wefel JS, Harless JD. The use of saturated DCPD in remineralization of artificial caries lesions in vitro. J Dent Res. 1987;66(11):1640–3.

    Article  PubMed  Google Scholar 

  65. Reynolds EC. Casein phosphopeptide-amorphous calcium phosphate: the scientific evidence. Adv Dent Res. 2009;21(1):25–9.

    Article  PubMed  Google Scholar 

  66. Cochrane NJ, Saranathan S, Cai F, Cross KJ, Reynolds EC. Enamel subsurface lesion remineralisation with casein phosphopeptide stabilised solutions of calcium, phosphate and fluoride. Caries Res. 2008;42(2):88–97.

    Article  PubMed  Google Scholar 

  67. Cross KJ, Huq NL, Palamara JE, Perich JW, Reynolds EC. Physicochemical characterization of casein phosphopeptide-amorphous calcium phosphate nanocomplexes. J Biol Chem. 2005;280(15):15362–9.

    Article  PubMed  Google Scholar 

  68. Cochrane NJ, Cai F, Huq NL, Burrow MF, Reynolds EC. New approaches to enhanced remineralization of tooth enamel. J Dent Res. 2010;89(11):1187–97.

    Article  PubMed  Google Scholar 

  69. Cheng L, Li J, Hao Y, Zhou X. Effect of compounds of Galla chinensis and their combined effects with fluoride on remineralization of initial enamel lesion in vitro. J Dent. 2008;36(5):369–73.

    Article  PubMed  Google Scholar 

  70. Chu JP, Li JY, Hao YQ, Zhou XD. Effect of compounds of Galla chinensis on remineralisation of initial enamel carious lesions in vitro. J Dent. 2007;35(5):383–7.

    Article  PubMed  Google Scholar 

  71. Zou L, Zhang L, Li J, Hao Y, Cheng L, Li W, et al. Effect of Galla chinensis extract and chemical fractions on demineralization of bovine enamel in vitro. J Dent. 2008;36(12):999–1004.

    Article  PubMed  Google Scholar 

  72. Guo B, Que KH, Jing Y, Wang B, Liang QQ, Xie HH. Effect of Galla chinensis on the remineralization of two bovine root lesions morphous in vitro. Int J Oral Sci. 2012;4(3):152–6.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Huang S, Gao S, Cheng L, Yu H. Combined effects of nano-hydroxyapatite and Galla chinensis on remineralisation of initial enamel lesion in vitro. J Dent. 2010;38(10):811–9.

    Article  PubMed  Google Scholar 

  74. Castellan CS, Luiz AC, Bezinelli LM, Lopes RM, Mendes FM, De PEC, et al. In vitro evaluation of enamel demineralization after Er:YAG and Nd:YAG laser irradiation on primary teeth. Photomed Laser Surg. 2007;25(2):85–90.

    Article  PubMed  Google Scholar 

  75. Ceballos L, Toledano M, Osorio R, Garcia-Godoy F, Flaitz C, Hicks J. ER-YAG laser pretreatment effect on in vitro secondary caries formation around composite restorations. Am J Dent. 2001;14(1):46–9.

    PubMed  Google Scholar 

  76. Tsai CL, Lin YT, Huang ST, Chang HW. In vitro acid resistance of CO2 and Nd-YAG laser-treated human tooth enamel. Caries Res. 2002;36(6):423–9.

    Article  PubMed  Google Scholar 

  77. Featherstone JD, Barrett-Vespone NA, Fried D, Kantorowitz Z, Seka W. CO2 laser inhibitor of artificial caries-like lesion progression in dental enamel. J Dent Res. 1998;77(6):1397–403.

    Article  PubMed  Google Scholar 

  78. Hsu CY, Jordan TH, Dederich DN, Wefel JS. Effects of low-energy CO2 laser irradiation and the organic matrix on inhibition of enamel demineralization. J Dent Res. 2000;79(9):1725–30.

    Article  PubMed  Google Scholar 

  79. Poosti M, Ahrari F, Moosavi H, Najjaran H. The effect of fractional CO laser irradiation on remineralization of enamel white spot lesions. Lasers Med Sci. 2014;29(4):1349–55.

    Google Scholar 

  80. Maung NL, Wohland T, Hsu CY. Enamel diffusion modulated by Er:YAG laser (Part 1)–FRAP. J Dent. 2007;35(10):787–93.

    Article  PubMed  Google Scholar 

  81. Hannig M, Hannig C. Nanotechnology and its role in caries therapy. Adv Dent Res. 2012;24(2):53–7.

    Article  PubMed  Google Scholar 

  82. Cushing BL, Kolesnichenko VL, O’Connor CJ. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev. 2004;104(9):3893–946.

    Article  PubMed  Google Scholar 

  83. Allaker RP, Ren G. Potential impact of nanotechnology on the control of infectious diseases. Trans R Soc Trop Med Hyg. 2008;102(1):1–2.

    Article  PubMed  Google Scholar 

  84. Huang S, Gao S, Cheng L, Yu H. Remineralization potential of nano-hydroxyapatite on initial enamel lesions: an in vitro study. Caries Res. 2011;45(5):460–8.

    Article  PubMed  Google Scholar 

  85. Nakashima S, Yoshie M, Sano H, Bahar A. Effect of a test dentifrice containing nano-sized calcium carbonate on remineralization of enamel lesions in vitro. J Oral Sci. 2009;51(1):69–77.

    Article  PubMed  Google Scholar 

  86. Roveri N, Palazzo B, Iafisco M. The role of biomimetism in developing nanostructured inorganic matrices for drug delivery. Expert Opin Drug Deliv. 2008;5(8):861–77.

    Article  PubMed  Google Scholar 

  87. Sakaguchi RL. Review of the current status and challenges for dental posterior restorative composites: clinical, chemistry, and physical behavior considerations. Summary of discussion from the Portland Composites Symposium (POCOS) June 17–19, 2004, Oregon Health and Science University, Portland, Oregon. Dent Mater. 2005;21(1):3–6.

    Article  PubMed  Google Scholar 

  88. Frost PM. An audit on the placement and replacement of restorations in a general dental practice. Prim Dent Care. 2002;9(1):31–6.

    Article  PubMed  Google Scholar 

  89. Huang Z, Newcomb CJ, Bringas Jr P, Stupp SI, Snead ML. Biological synthesis of tooth enamel instructed by an artificial matrix. Biomaterials. 2010;31(35):9202–11.

    Article  PubMed Central  PubMed  Google Scholar 

  90. Chen MH. Update on dental nanocomposites. J Dent Res. 2010;89(6):549–60.

    Article  PubMed  Google Scholar 

  91. Xu HH, Moreau JL, Sun L, Chow LC. Novel CaF(2) nanocomposite with high strength and fluoride ion release. J Dent Res. 2010;89(7):739–45.

    Article  PubMed Central  PubMed  Google Scholar 

  92. Xu HH, Moreau JL, Sun L, Chow LC. Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition. Dent Mater. 2011;27(8):762–9.

    Article  PubMed Central  PubMed  Google Scholar 

  93. Xu HH, Weir MD, Sun L. Nanocomposites with Ca and PO4 release: effects of reinforcement, dicalcium phosphate particle size and silanization. Dent Mater. 2007;23(12):1482–91.

    Article  PubMed Central  PubMed  Google Scholar 

  94. Xu HH, Weir MD, Sun L, Moreau JL, Takagi S, Chow LC, et al. Strong nanocomposites with Ca, PO(4), and F release for caries inhibition. J Dent Res. 2010;89(1):19–28.

    Article  PubMed Central  PubMed  Google Scholar 

  95. Xu HH, Weir MD, Sun L, Takagi S, Chow LC. Effects of calcium phosphate nanoparticles on Ca-PO4 composite. J Dent Res. 2007;86(4):378–83.

    Article  PubMed Central  PubMed  Google Scholar 

  96. Xu HH, Moreau JL, Sun L, Chow LC. Strength and fluoride release characteristics of a calcium fluoride based dental nanocomposite. Biomaterials. 2008;29(32):4261–7.

    Article  PubMed Central  PubMed  Google Scholar 

  97. Yamagishi K, Onuma K, Suzuki T, Okada F, Tagami J, Otsuki M, et al. Materials chemistry: a synthetic enamel for rapid tooth repair. Nature. 2005;433(7028):819.

    Article  PubMed  Google Scholar 

  98. Zhang J, Jiang D, Lin Q, Huang Z. Synthesis of dental enamel-like hydroxyapatite through solution mediated solid-state conversion. Langmuir. 2010;26(5):2989–94.

    Article  PubMed  Google Scholar 

  99. Ma G, Liu XY, Wang M. Growth and mechanisms of enamel-like hierarchical nanostructures on single crystalline hydroxyapatite micro-ribbons. J Nanosci Nanotechnol. 2011;11(6):5199–206.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Lei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lei, C., Jiyao, L., Hockin H.K., X., Xuedong, Z. (2016). Demineralization and Remineralization. In: Xuedong, Z. (eds) Dental Caries. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47450-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47450-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47449-5

  • Online ISBN: 978-3-662-47450-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics