Skip to main content

Statistical Randomized Encodings: A Complexity Theoretic View

  • Conference paper
  • First Online:
Automata, Languages, and Programming (ICALP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9134))

Included in the following conference series:

Abstract

A randomized encoding of a function f(x) is a randomized function \(\hat{f}(x,r)\), such that the “encoding” \(\hat{f}(x,r)\) reveals f(x) and essentially no additional information about x. Randomized encodings of functions have found many applications in different areas of cryptography, including secure multiparty computation, efficient parallel cryptography, and verifiable computation.

We initiate a complexity-theoretic study of the class \(\mathsf {SRE} \) of languages (or boolean functions) that admit an efficient statistical randomized encoding. That is, \(\hat{f}(x,r)\) can be computed in time poly(|x|), and its output distribution on input x can be sampled in time poly(|x|) given f(x), up to a small statistical distance.

We obtain the following main results.

  • Separating \(\mathsf {SRE} \) from efficient computation: We give the first examples of promise problems and languages in \(\mathsf {SRE} \) that are widely conjectured to lie outside \(\mathsf {P/poly}\). Our candidate promise problems and languages are based on the standard Learning with Errors (LWE) assumption, a non-standard variant of the Decisional Diffie Hellman (DDH) assumption and the “Abelian Subgroup Membership problem” (which generalizes Quadratic-Residuosity and a variant of DDH).

  • Separating \(\mathsf {SZK} \) from \(\mathsf {SRE} \) : We explore the relationship of \(\mathsf {SRE} \) with the class \(\mathsf {SZK} \) of problems possessing statistical zero knowledge proofs. It is known that \(\mathsf {SRE} \subseteq \mathsf {SZK} \). We present an oracle separation which demonstrates that a containment of \(\mathsf {SZK} \) in \(\mathsf {SRE} \) cannot be proved via relativizing techniques.

Y. Ishai–Research supported by the European Union’s Tenth Framework Programme (FP10/2010-2016) under grant agreement no. 259426 ERC-CaC, ISF grants 1361/10 and 1709/14 and BSF grant 2012378.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiello, W., Håstad, J.: Relativized perfect zero knowledge is not BPP. Inf. Comput. (1991)

    Google Scholar 

  2. Applebaum, B.: Cryptography in Constant Parallel Time. Ph.D. thesis, Technion (2007)

    Google Scholar 

  3. Applebaum, B.: Randomly encoding functions: a new cryptographic paradigm. In: Fehr, S. (ed.) ICITS 2011. LNCS, vol. 6673, pp. 25–31. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing polynomials and their applications. In: IEEE Conference on Computational Complexity, pp. 260–274. IEEE Computer Society (2005)

    Google Scholar 

  5. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. SIAM J. Comput. 36(4), 845–888 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: efficient verification via secure computation. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 152–163. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Baker, T.P., Gill, J., Solovay, R.: Relativizatons of the P =? NP question. SIAM J. Comput. 4(4), 431–442 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: STOC. ACM (1988)

    Google Scholar 

  9. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols. In: STOC, pp. 11–19. ACM, New York (1988)

    Google Scholar 

  10. Dvir, Z., Gutfreund, D., Rothblum, G.N., Vadhan, S.: On approximating the entropy of polynomial mappings. In: ICS, pp. 460–475 (2011)

    Google Scholar 

  11. Feige, U., Killian, J., Naor, M.: A minimal model for secure computation (extended abstract). In: STOC, pp. 554–563 (1994)

    Google Scholar 

  12. Galbraith, S.D., Rotger, V.: Easy decision-diffie-hellman groups (2004)

    Google Scholar 

  13. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with applications to round-efficient secure computation. In: FOCS, pp. 294–304. IEEE Computer Society (2000)

    Google Scholar 

  14. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect randomizing polynomials. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Ishai, Y., Kushilevitz, E., Paskin-Cherniavsky, A.: From randomizing polynomials to parallel algorithms. In: ITCS. ACM, New York (2012)

    Google Scholar 

  16. Kilian, J.: Founding crytpography on oblivious transfer. In: STOC, pp. 20–31. ACM, New York (1988)

    Google Scholar 

  17. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. J. ACM 51(2), Mar 2004

    Google Scholar 

  18. Sahai, A., Vadhan, S.: A complete problem for statistical zero knowledge. J. ACM 50(2), 196–249 (2003). http://doi.acm.org/10.1145/636865.636868

    Article  MathSciNet  Google Scholar 

  19. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–167 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dakshita Khurana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Agrawal, S., Ishai, Y., Khurana, D., Paskin-Cherniavsky, A. (2015). Statistical Randomized Encodings: A Complexity Theoretic View. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47672-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47672-7_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47671-0

  • Online ISBN: 978-3-662-47672-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics