Skip to main content

Stability and Synchronization of Neutral-Type Neural Networks

  • Chapter
  • First Online:
Stability and Synchronization Control of Stochastic Neural Networks

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 35))

  • 1121 Accesses

Abstract

When the states of a system are decided not only by states of the current time and the past time but also by the derivative of the past states, the system can be called a neutral system. The problems of stability and synchronization of neutral neural networks play an important role in the same issues of neural networks. In this chapter, robust stability of neutral neural networks is first discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Bao, J. Cao, Stochastic global exponential stability for neutral-type impulsive neural networks with mixed time-delays and Markovian jumping parameters. Commun. Nonlinear Sci. Numer. Simul. 16(9), 3786–3791 (2011)

    MathSciNet  Google Scholar 

  2. G. Cai, Q. Yao, X. Fan, J. Ding, Adaptive projective synchronization in an array of asymmetric neural networks. J. Comput. 7(8), 2024–2030 (2012)

    Google Scholar 

  3. S. Chen, J. Cao, Projective synchronization of neural networks with mixed time-varying delays and parameter mismatch. Nonlinear Dyn. 67(2), 1397–1406 (2012)

    MathSciNet  Google Scholar 

  4. X. Ding, Y. Gao, W. Zhou, D. Tong, H. Su, Adaptive almost surely asymptotically synchronization for stochastic delayed neural networks with Markovian switching. Adv. Differ. Equ. 2013(1), 1–12 (2013)

    MathSciNet  Google Scholar 

  5. J. Feng, S. Xu, Y. Zou, Delay-dependent stability of neutral type neural networks with distributed delays. Neurocomputing 72(10–12), 2576–2580 (2009)

    Google Scholar 

  6. J.M. González-Miranda, Amplification and displacement of chaotic attractors by means of unidirectional chaotic driving. Phys. Rev. E 57(6), 7321–7324 (1998)

    Google Scholar 

  7. W.L. He, J.D. Cao, Adaptive synchronization of a class of chaotic neural networks with known or unknown parameters. Phys. Lett. A 372(4), 408–416 (2008)

    Google Scholar 

  8. H. Huang, D.W.C. Ho, Y. Qu, Robust stability of stochastic delayed additive neural networks with Markovian switching. Neural Netw. 20(7), 799–809 (2007)

    Google Scholar 

  9. X. Huang, J. Cao, Generalized synchronization for delayed chaotic neural networks a novel coupling scheme. Nonlinearity 19(12), 2797–2811 (2006)

    MathSciNet  Google Scholar 

  10. H. Huo, W. Li, Existence of positive periodic solution of a neutral impulsive delay predator-prey system. Appl. Math. Comput. 185(1), 499–507 (2007)

    MathSciNet  Google Scholar 

  11. H.R. Karimi, Robust synchronization and fault detection of uncertain master-slave systems with mixed time-varying delays and nonlinear perturbations. Int. J. Control Autom. Syst. 9(4), 671–680 (2011)

    Google Scholar 

  12. H.R. Karimi, A sliding mode approach to \({H}_\infty \) synchronization of master-slave time-delay systems with Markovian jumping parameters and nonlinear uncertainties. J. Frankl. Inst. 349(4), 1480–1496 (2012)

    MathSciNet  Google Scholar 

  13. H.R. Karimi, H. Gao, LMI-based \({H}_\infty \) synchronization of second-order neutral master-slave systems using delayed output feedback control. Int. J. Control Autom. Syst. 7(3), 371–380 (2009)

    Google Scholar 

  14. H.R. Karimi, M. Zapateiro, N. Luo, Adaptive synchronization of master-slave systems with mixed neutral and discrete time-delays and nonlinear perturbations. Asian J. Control 14(1), 251–257 (2012)

    MathSciNet  Google Scholar 

  15. S. Karthikeyan, K. Balachandran, Controllability of nonlinear stochastic neutral impulsive systems. Nonlinear Anal. Hybrid Syst. 3(3), 266–276 (2009)

    MathSciNet  Google Scholar 

  16. V. Kolmanovskii, N. Koroleva, T. Maizenberg, X. Mao, A. Matasov, Neutral stochastic differential delay equations with Markovian switching. Stoch. Anal. Appl. 21(4), 839–867 (2003)

    MathSciNet  Google Scholar 

  17. O.M. Kwon, M.J. Park, S.M. Lee, J.H. Park, E.-J. Cha, Stability for neural networks with time-varying delays via some new approaches. IEEE Trans. Neural Netw. Learn. Syst. 24(2), 181–193 (2013)

    Google Scholar 

  18. T.H. Lee, J.H. Park, O.M. Kwon, S.M. Lee, Stochastic sampled-data control for state estimation of time-varying delayed neural networks. Neural Netw. 46(1), 99–108 (2013)

    MathSciNet  Google Scholar 

  19. F. Li, X. Wang, P. Shi, Robust quantized \({H}_\infty \) control for network control systems with Markovian jumps and time delays. Int. J. Innov. Comput. Inf. Control 9(12), 4889–4902 (2013)

    MathSciNet  Google Scholar 

  20. X. Li, Global robust stability for stochastic interval neural networks with continuously distributed delays of neutral type. Appl. Math. Comput. 215(12), 4370–4384 (2010)

    MathSciNet  Google Scholar 

  21. X. Li, J. Cao, Adaptive synchronization for delayed neural networks with stochastic perturbation. J. Frankl. Inst. 354(7), 779–791 (2008)

    MathSciNet  Google Scholar 

  22. C.-H. Lien, K.-W. Yu, Y.-F. Lin, Y.-J. Chung, L.-Y. Chung, Exponential convergence rate estimation for uncertain delayed neural networks of neutral type. Chaos Solitons Fractals 40(5), 2491–2499 (2009)

    MathSciNet  Google Scholar 

  23. L. Liu, Z. Han, W. Li, Global stability analysis of interval neural networks with discrete and distributed delays of neutral type. Expert Syst. Appl. 36(3), 7328–7331 (2009)

    Google Scholar 

  24. P. Liu, Delay-dependent robust stability analysis for recurrent neural networks with time-varying delay. Int. J. Innov. Comput. Inf. Control 9(8), 3341–3355 (2013)

    Google Scholar 

  25. Y. Liu, Stochastic asymptotic stability of Markovian jumping neural networks with Markov mode estimation and mode-dependent delays. Phys. Lett. A 373(41), 3741–3742 (2009)

    MathSciNet  Google Scholar 

  26. Y. Liu, Z. Wang, X. Liu, Stability analysis for a class of neutral-type neural networks with Markovian jumping parameters and mode-dependent mixed delays. Neurocomputing 94, 46–53 (2012)

    Google Scholar 

  27. X. Lou, B. Cui, Stochastic stability analysis for delayed neural networks of neutral type with Markovian jump parameters. Chaos Solitons Fractals 39(5), 2188–2197 (2009)

    MathSciNet  Google Scholar 

  28. J. Lu, D.W.C. Ho, J. Cao, J. Kurths, Exponential synchronization of linearly coupled neural networks with impulsive disturbances. IEEE Trans. Neural Netw. 22(2), 329–336 (2011)

    Google Scholar 

  29. Q. Lu, L. Zhang, P. Shi, H. Karimi, Control design for a hypersonic aircraft using a switched linear parameter-varying system approach. Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 227(1), 85–95 (2013)

    Google Scholar 

  30. H.H. Mai, X.F. Liao, C.D. Li, A semi-free weighting matrices approach for neutral-type delayed neural networks. J. Comput. Appl. Math. 225(1), 44–55 (2009)

    MathSciNet  Google Scholar 

  31. X. Mao, Stochastic Differential Equations and Their Applications (Horwood, Chichester, 1997)

    Google Scholar 

  32. X. Mao, Y. Shen, C. Yuan, Almost surely asymptotic stability of neutral stochastic differential delay equations with Markovian switching. Stoch. Process. Appl. 118(8), 1385–1406 (2008)

    MathSciNet  Google Scholar 

  33. X. Mao, C. Yuan, Stochastic Differential Equations with Markovian Switching (Imperial College Press, London, 2006)

    Google Scholar 

  34. J.H. Park, Synchronization of cellular neural networks of neutral type via dynamic feedback controller. Chaos Solitons Fractals 42(3), 1299–1304 (2009)

    MathSciNet  Google Scholar 

  35. J.H. Park, O.M. Kwon, Global stability for neural networks of neutral-type with interval time-varying delays. Chaos Solitons Fractals 41(3), 1174–1181 (2009)

    MathSciNet  Google Scholar 

  36. J.H. Park, O.M. Kwon, S.M. Lee, LMI optimization approach on stability for delayed neural networks of neutral-type. Appl. Math. Comput. 196(1), 236–244 (2008)

    MathSciNet  Google Scholar 

  37. J.H. Park, C. Park, O. Kwon, S. Lee, A new stability criterion for bidirectional associative memory neural networks of neutral-type. Appl. Math. Comput. 199(2), 716–722 (2008)

    MathSciNet  Google Scholar 

  38. V.P. Rubanik, Oscillations of Qasilinear Systems with Retardation (Nauka, Moscow, 1969)

    Google Scholar 

  39. R. Samli, S. Arik, New results for global stability of a class of neutral-type neural systems with time delays. Appl. Math. Comput. 210(2), 564–570 (2009)

    MathSciNet  Google Scholar 

  40. L. Sheng, M. Gao, Robust stability of Markovian jump discrete-time neural networks with partly unknown transition probabilities and mixed mode-dependent delays. Int. J. Syst. Sci. 44(2), 252–264 (2013)

    MathSciNet  Google Scholar 

  41. P. Shi, E.K. Boukas, R. Agarwal, Control of Markovian jump discrete-time systems with norm bounded uncertainty and unknown delay. IEEE Trans. Autom. Control 44(11), 2139–2144 (1999)

    MathSciNet  Google Scholar 

  42. P. Shi, E.K. Boukas, R. Agarwal, Kalman filtering for continuous-time uncertain systems with Markovian jumping parameters. IEEE Trans. Autom. Control 44(8), 1592–1597 (1999)

    MathSciNet  Google Scholar 

  43. W. Su, Y. Chen, Global asymptotic stability analysis for neutral stochastic neural networks with time-varying delays. Commun. Nonlinear Sci. Numer. Simul. 14(4), 1576–1581 (2009)

    MathSciNet  Google Scholar 

  44. Y. Sun, J. Cao, Adaptive lag synchronization of unknown chaotic delayed neural networks with noise perturbation. Phys. Lett. A 364(3), 277–285 (2007)

    Google Scholar 

  45. Y. Sun, G. Feng, J. Cao, Stochastic stability of Markovian switching genetic regulatory networks. Phys. Lett. A 373(18), 1646–1652 (2009)

    MathSciNet  Google Scholar 

  46. Y. Tang, J. Fang, Adaptive synchronization in an array of chaotic neural networks with mixed delays and jumping stochastically hybrid coupling. Commun. Nonlinear Sci. Numer. Simul. 14(9), 3615–3628 (2009)

    MathSciNet  Google Scholar 

  47. Y. Tang, H. Gao, W. Zou, J. Kurths, Distributed synchronization in networks of agent systems with nonlinearities and random switchings. IEEE Trans. Cybern. 43(1), 358–370 (2013)

    Google Scholar 

  48. Y. Tang, R. Qiu, J. Fang, Q. Miao, M. Xia, Adaptive lag synchronization in unknown stochastic chaotic neural networks with discrete and distributed time-varying delays. Phys. Lett. A 372(24), 4425–4433 (2008)

    MathSciNet  Google Scholar 

  49. Y. Tang, Z. Wang, J. Fang, Controller design for synchronization of an array of delayed neural networks using a controllable probabilistic PSO. Inf. Sci. 181(20), 4715–4732 (2011)

    Google Scholar 

  50. Y. Tang, Z. Wang, H. Gao, S. Swift, J. Kurths, A constrained evolutionary computation method for detecting controlling regions of cortical networks. IEEE-ACM Trans. Comput. Biol. Bioinform. 9(6), 1569–1581 (2012)

    Google Scholar 

  51. Y. Tang, W.K. Wong, Distributed synchronization of coupled neural networks via randomly occurring control. IEEE Trans. Neural Netw. Learn. Syst. 24(3), 435–447 (2013)

    Google Scholar 

  52. D. Tong, Q. Zhu, W. Zhou, Y. Xu, J. Fang, Adaptive synchronization for stochastic T-S fuzzy neural networks with time-delay and Markovian jumping parameters. Neurocomputing 27(6), 91–97 (2013)

    Google Scholar 

  53. K. Wang, Z. Teng, H. Jiang, Adaptive synchronization of neural networks with time-varying delay and distributed delay. Phys. A: Stat. Mech. Appl. 387(2–3), 631–642 (2008)

    Google Scholar 

  54. Q. Wang, Q. Lu, Phase synchronization in small world chaotic neural networks. Chin. Phys. Lett. 22(6), 1329–1332 (2005)

    Google Scholar 

  55. Z. Wang, J. Fang, X. Liu, Global stability of stochastic high-order neural networks with discrete and distributed delays. Chaos Solitons Fractals 36(2), 388–396 (2008)

    MathSciNet  Google Scholar 

  56. Z. Wang, Y. Liu, L. Liu, X. Liu, Exponential stability of delayed recurrent neural networks with Markovian jumping parameters. Phys. Lett. A 356(4), 346–352 (2006)

    Google Scholar 

  57. Z. Wang, Y. Liu, X. Liu, Exponential stabilization of a class of stochastic system with Markovian jump parameters and mode-dependent mixed time-delays. IEEE Trans. Autom. Control 55(7), 1656–1662 (2010)

    Google Scholar 

  58. Z. Wang, Y. Liu, G. Wei, X. Liu, A note on control of discrete-time stochastic systems with distributed delays and nonlinear disturbances. Automatica 46(3), 543–548 (2010)

    MathSciNet  Google Scholar 

  59. Z.D. Wang, D.W.C. Ho, Y.R. Liu, X.H. Liu, Robust \({H}_\infty \) control for a class of nonlinear discrete time-delay stochastic systems with missing measurements. Automatica 45(3), 1–8 (2010)

    MathSciNet  Google Scholar 

  60. Z. Wu, P. Shi, H. Su, J. Chu, Delay-dependent stability analysis for switched neural networks with time-varying delay. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 41(6), 1522–1530 (2011)

    MathSciNet  Google Scholar 

  61. Z. Wu, P. Shi, H. Su, J. Chu, Passivity analysis for discrete-time stochastic Markovian jump neural networks with mixed time-delays. IEEE Trans. Neural Netw. 22(10), 1566–1575 (2011)

    Google Scholar 

  62. Z. Wu, P. Shi, H. Su, J. Chu, Exponential synchronization of neural networks with discrete and distributed delays under time-varying sampling. IEEE Trans. Neural Netw. Learn. Syst. 23(9), 1368–1376 (2012)

    Google Scholar 

  63. Z. Wu, P. Shi, H. Su, J. Chu, Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled-data. IEEE Trans. Cybern. 43(6), 1796–1806 (2013)

    Google Scholar 

  64. Y. Yang, J. Cao, Exponential lag synchronization of a class of chaotic delayed neural networks with impulsive effects. Phys. A: Stat. Mech. Appl. 386(1), 492–502 (2007)

    Google Scholar 

  65. W. Yu, J. Cao, Synchronization control of stochastic delayed neural networks. Phys. A: Stat. Mech. Appl. 373(1), 252–260 (2007)

    Google Scholar 

  66. C. Yuan, X. Mao, Robust stability and controllability of stochastic differential delay equations with Markovian switching. Automatica 40(3), 343–354 (2004)

    MathSciNet  Google Scholar 

  67. D. Zhang, J. Xu, Projective synchronization of different chaotic time-delayed neural networks based on integral sliding mode controller. Appl. Math. Comput. 217(1), 164–174 (2010)

    MathSciNet  Google Scholar 

  68. L. Zhang, E. Boukas, Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities. Automatica 45(2), 463–468 (2009)

    MathSciNet  Google Scholar 

  69. L. Zhang, E.K. Boukas, \({H}_\infty \) control for discrete-time Markovian jump linear systems with partly unknown transition probabilities. Int. J. Robust Nonlinear Control 19(8), 868–883 (2009)

    MathSciNet  Google Scholar 

  70. L. Zhang, E.K. Boukas, \({H}_\infty \) control of a class of extended Markov jump linear systems. IET Control Theory Appl. 3(7), 834–842 (2009)

    MathSciNet  Google Scholar 

  71. L. Zhang, E.K. Boukas, J. Lam, Analysis and synthesis of Markov jump linear systems with time-varying delays and partially known transition probabilities. IEEE Trans. Autom. Control 53(10), 2458–2464 (2008)

    MathSciNet  Google Scholar 

  72. L. Zhang, J. Lam, Necessary and sufficient conditions for analysis and synthesis of Markov jump linear systems with incomplete transition descriptions. IEEE Trans. Autom. Control 55(7), 1695–1701 (2010)

    MathSciNet  Google Scholar 

  73. W. Zhang, Y. Tang, J. Fang, Stochastic stability of Markovian jumping genetic regulatory networks with mixed time delays. Appl. Math. Comput. 217(17), 7210–7225 (2011)

    MathSciNet  Google Scholar 

  74. Y. Zhang, J. Sun, Stability of impulsive neural networks with time delays. Phys. Lett. A 348(1), 44–50 (2005)

    Google Scholar 

  75. Y.J. Zhang, S.Y. Xu, Y.M. Chu, J.J. Lu, Robust global synchronization of complex networks with neutral-type delayed nodes. Appl. Math. Comput. 216(3), 768–778 (2010)

    MathSciNet  Google Scholar 

  76. H. Zhao, S. Xu, Y. Zou, Robust \({H}_\infty \) filtering for uncertain Markovian jump systems with mode-dependent distributed delays. Int. J. Adapt. Control Signal Process 24(1), 83–94 (2010)

    MathSciNet  Google Scholar 

  77. J. Zhou, T. Chen, L. Xiang, Chaotic lag synchronization of coupled delayed neural networks and its applications in secure communication. Circuits Syst. Signal Process. 24(5), 599–613 (2005)

    MathSciNet  Google Scholar 

  78. Q. Zhou, P. Shi, H. Liu, S. Xu, Neural-network-based decentralized adaptive output-feedback control for large-scale stochastic nonlinear systems. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 42(6), 1608–1619 (2012)

    Google Scholar 

  79. W. Zhou, Y. Gao, D. Tong, C. Ji, J. Fang, Adaptive exponential synchronization in pth moment of neutral-type neural networks with time delays and Markovian switching. Int. J. Control, Autom. Syst. 11(4), 845–851 (2013)

    Google Scholar 

  80. W. Zhou, H. Lu, C. Duan, Exponential stability of hybrid stochastic neural networks with mixed time delays and nonlinearity. Neurocomputing 72(13), 3357–3365 (2009)

    Google Scholar 

  81. W. Zhou, D. Tong, Y. Gao, C. Ji, H. Su, Mode and delay-dependent adaptive exponential synchronization in pth moment for stochastic delayed neural networks with Markovian switching. IEEE Trans. Neural Netw. Learn. Syst. 23(4), 662–668 (2012)

    Google Scholar 

  82. J. Zhu, Q. Zhang, C. Yang, Delay-dependent robust stability for Hopfield neural networks of neutral-type. Neurocomputing 72(10), 2609–2617 (2009)

    Google Scholar 

  83. Q. Zhu, J. Cao, Adaptive synchronization under almost every initial data for stochastic neural networks with time-varying delays and distributed delays. Commun. Nonlinear Sci. Numer. Simul. 16(4), 2139–2159 (2011)

    MathSciNet  Google Scholar 

  84. Q. Zhu, W. Zhou, D. Tong, J. Fang, Adaptive synchronization for stochastic neural networks of neutral-type with mixed time-delays. Neurocomputing 99, 477–485 (2013)

    Google Scholar 

  85. S. Zhu, Y. Shen, Passivity analysis of stochastic delayed neural networks with Markovian switching. Neurocomputing 74(10), 1754–1761 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wuneng Zhou .

Appendix

Appendix

Proof

The proof of (R1) is the same as [32] and omitted here. To prove (R2), we will divide it into five steps. We change \(\bar{D}\) into D in subsequence for simplicity.

Step 1    To prove that the solution \(x(t, i_0, \xi )\) of the system obeys

(5.292)

In fact, let

$$\begin{aligned} \begin{aligned}&M(t)\\ =&\int _{0}^{t}V_x(s, r(s), x(s)-D(x(s-\tau ), r(s)))dB(s)\\&+ \int _{0}^{t}\int _\mathbb R(V(s, i_0+\bar{h}(r(s-),l), x(s)-D(x(s-\tau ), r(s)))\\&-V(s, r(s), x(s)-D(x(s-\tau ),r(s)))\mu (ds, dl) \end{aligned} \end{aligned}$$
(5.293)

which is a continuous local martingale with \(M(0)=0, \textit{a.s.}\) By generalized Itô formula (Lemma 1.10), we have

$$\begin{aligned} \begin{array}{rl} &{} V(t, i, x(t)-D(i, x(t-\tau )))\\ \le &{} V(0, i_0, x(0)-D(i, x(-\tau )))\\ &{} +\int _0^t \mathcal{L}V(s, r(s), x(s), x(s)-D(r(s), x(s-\tau )))ds\\ &{} +M(t)\\ \le &{} V(0, i_0, x(0)-D(i, x(-\tau )))\\ &{} +\int _0^t(\gamma (s)-W_1(x(s))+W_2(x(s-\tau ))\\ &{} -W_3(x(s)-D(r(s), x(s-\tau ))))ds+M(t)\\ \le &{} V(0, i_0, x(0)-D(i, x(-\tau )))\\ &{} +\int _0^t\gamma (s)ds-\int _0^tW_1(x(s))ds+\int _0^tW_2(x(s-\tau ))ds\\ &{} -\int _0^tW_3(x(s)-D(r(s), x(s-\tau )))ds+M(t)\\ = &{} V(0, i_0, x(0)-D(i, \xi (-\tau )))\\ &{} +\int _0^t\gamma (s)ds-\int _0^tW_1(x(s))ds+\int _{-\tau }^{t-\tau }W_2(x(s))ds\\ &{} -\int _0^tW_3(x(s)-D(r(s), x(s-\tau )))ds+M(t)\\ \le &{} V(0, i_0, x(0)-D(i, \xi (-\tau )))+\int _{-\tau }^{0}W_2(x(s))ds\\ &{} +\int _0^t\gamma (s)ds-\int _0^t(W_1(x(s))-W_2(x(s)))ds\\ &{} -\int _0^tW_3(x(s)-D(r(s), x(s-\tau )))ds+M(t) \end{array} \end{aligned}$$
(5.294)

By the convergence theorem of nonnegative semimartingales (Lemma 1.1), we have (5.292).

Step 2    To prove

$$\begin{aligned} \sup \limits _{0\le t<\infty }|x(t)|<\infty ~\textit{a.s.} \end{aligned}$$
(5.295)

Indeed, from (5.292), we have

$$\begin{aligned} \sup \limits _{0\le t<\infty }V(t, r(t), x(t)-D(r(t), x(t-\tau )))<\infty ~\textit{a.s.} \end{aligned}$$

which together with (C1), yields

$$\begin{aligned} \sup \limits _{0\le t<\infty }|x(t)-D(r(t), x(t-\tau ))|<\infty ~\textit{a.s.} \end{aligned}$$
(5.296)

Now, for any \(T>0\), by (H2), we have that if \(0\le t\le T\), then

$$\begin{aligned} \begin{array}{rl} |x(t)| &{} \le |D(r(t), x(t-\tau ))|+|x(t)-D(r(t), x(t-\tau ))|\\ &{} \le \kappa |x(t-\tau )|+|x(t)-D(r(t), x(t-\tau ))| \end{array} \end{aligned}$$

where \(\kappa =\max \limits _{i\in \mathbb S}\kappa _i<1\). This implies

$$\begin{aligned} \begin{array}{rl} &{} \sup \limits _{0\le t\le T} |x(t)|\\ \le &{} \kappa \sup \limits _{0\le t\le T}|x(t-\tau )| +\sup \limits _{0\le t\le T}|x(t)-D(r(t), x(t-\tau ))|\\ = &{} \kappa \beta + \kappa \sup \limits _{0\le t\le T}|x(t)| +\sup \limits _{0\le t\le T}|x(t)-D(r(t), x(t-\tau ))| \end{array} \end{aligned}$$

where \(\beta \) is the bound for the initial data \(\xi \). Hence,

$$\begin{aligned} \sup \limits _{0\le t\le T} |x(t)|\le \frac{1}{1-\kappa }\left( \kappa \beta +\sup \limits _{0\le t\le T}|x(t)-D(r(t), x(t-\tau ))|\right) \end{aligned}$$

Letting \(T\rightarrow \infty \) and using (5.296), we obtain (5.295).

Step 3    To prove

$$\begin{aligned} \lim \limits _{t\rightarrow \infty }W_3(x(t)-D(r(t), x(t-\tau )))=0~\textit{a.s.} \end{aligned}$$
(5.297)

In fact, taking the expectations on both side of (5.294) and letting \(t\rightarrow \infty \), we obtain that

$$\begin{aligned} \mathbb {E}\int _0^\infty W(s)ds<\infty \end{aligned}$$
(5.298)

where \(W(s)=W_1(x(s))-W_2(x(s))+W_3(z(s)), z(s)=x(s)-D(r(s), x(s-\tau ))\).

This implies

$$\begin{aligned} \int _0^\infty W(s)ds<\infty ~\textit{a.s.} \end{aligned}$$
(5.299)

or equivalently,

$$\begin{aligned} \int _0^\infty (W_1(x(s))-W_2(x(s)))ds<\infty ~\textit{a.s.} \end{aligned}$$

and

$$\begin{aligned} \int _0^\infty W_3(z(s))ds < \infty ~\textit{a.s.} \end{aligned}$$

From (5.299), we have

(5.300)

or equivalently,

and

Now we will prove (5.297): \(\lim \limits _{t\rightarrow \infty }W_3(z(t))=0~\textit{a.s.}\) In fact, if (5.297) is false, then

Hence, there is a number \(\varepsilon >0\) such that

$$\begin{aligned} \mathbb {P}(\varOmega _1)\ge 3\varepsilon \end{aligned}$$
(5.301)

where

Recall (5.295), as well as the boundedness of the initial data \(\xi \), we can find a positive number h, which depends on \(\varepsilon \), sufficiently large for

$$\begin{aligned} \mathbb {P}(\varOmega _2)\ge 1-\varepsilon \end{aligned}$$
(5.302)

where \(\varOmega _2=\{\sup \limits _{-\tau \le t<\infty }|z(t)|<h\}\)

It is easy to see from (5.301) and (5.302) that

$$\begin{aligned} \mathbb {P}(\varOmega _1 \cap \varOmega _2)\ge 2\varepsilon \end{aligned}$$
(5.303)

We now define a sequence of stopping times as follows:

$$\begin{aligned} \begin{array}{l} \tau _h=\inf \{t\ge 0: |x(t)|\wedge |z(t)|\ge h\}\\ \sigma _1=\inf \{t\ge 0: W_3(z(t))\ge 2\varepsilon \}\\ \sigma _{2k}=\{t\ge \sigma _{2k-1}: W_3(z(t))<\varepsilon \}, k=1, 2, \ldots \\ \sigma _{2k+1}=\{t\ge \sigma _{2k}: W_3(z(t))\ge 2\varepsilon \}, k=1, 2, \ldots \end{array} \end{aligned}$$

where throughout this section, we set \(\inf \emptyset =\infty \).

From (5.300) and the definition of \(\varOmega _1\) and \(\varOmega _2\), we observe that if \(\omega \in \varOmega _1 \cap \varOmega _2\), then

$$\begin{aligned} \tau _h=\infty ~\mathrm{and} ~\sigma _k<\infty ~\forall k\ge 1 \end{aligned}$$
(5.304)

Let \(I_A\) denote the indication function of set A. Noting the fact that \(\sigma _{2k}<\infty \), whenever \(\sigma _{2k-1} < \infty \), we can derive from (5.298) that

$$\begin{aligned} \begin{array}{rl} \infty &{} > \mathbb {E}\int _0^\infty W_3(z(t))dt\\ &{} \ge \sum \limits _{k=1}^{\infty }\mathbb {E}\left[ I_{\sigma _{2k-1}<\infty , \sigma _{2k}<\infty , \tau _h=\infty }\int _{\sigma _{2k-1}}^{\sigma _{2k}} W_3(z(t))dt\right] \\ &{} \ge \varepsilon \sum \limits _{k=1}^{\infty }\mathbb {E}[I_{\sigma _{2k-1}<\infty , \tau _h=\infty }(\sigma _{2k}-\sigma _{2k-1})]\ \end{array} \end{aligned}$$
(5.305)

On the other hand, ny (H1), there exists a constant \(K_h>0\), such that

$$\begin{aligned} |f(t, i, x, y)|^2 \vee |g(t, i, x, y)|^2\le K_h^2 \end{aligned}$$

whenever \(|x|\vee |y|<h\) and \((t, i)\in \mathbb R_+\times \mathbb S \).

By the H\(\ddot{o}\)lder inequality (Lemma 1.15) and the Doob’s martingale inequality (Lemma 1.18), we compute that, for any \(T>0\) and \(k=1, 2, \ldots \)

$$\begin{aligned} \begin{array}{rl} &{} \mathbb {E}[I_{\tau _h\wedge \sigma _{2k-1}<\infty }\sup \limits _{0\le t\le T}|z(\tau _h\wedge (\sigma _{2k-1}+t))-z(\tau _h\wedge \sigma _{2k-1})|^2\\ \le &{} 2K_h^2T(T+4) \end{array} \end{aligned}$$
(5.306)

Since \(W_3(\cdot )\) is continuous in \(\mathbb {R}^n\), there exists a closed ball \(\bar{S}_h=\{x\in \mathbb {R}^n: |x|<h\}\) such that \(W_3(\cdot )\) is uniformly continuous in \(\bar{S}_h\). We can therefore choose \(\delta =\delta (\varepsilon )>0\) so small such that

$$\begin{aligned} |W_3(x)-W_3(y)|<\varepsilon /2~\mathrm{whenever} ~x, y \in \bar{S}_h,~|x-y|<\delta \end{aligned}$$
(5.307)

We furthermore choose \(T=T(\varepsilon , \delta , h)>0\) sufficiently small for

$$\begin{aligned} \frac{2K_h^2 T(T+4)}{\delta ^2}<\varepsilon \end{aligned}$$

It then follows from (5.306) and Chebyshev’s inequality (Lemma 1.19) that

Noting that

we hence have

By (5.303) and (5.304), we further compute

(5.308)

By (5.307), we hence obtain that

$$\begin{aligned} \begin{array}{rl} &{} \mathbb {P}\left( \{\sigma _{2k-1}<\infty , \tau _h=\infty \}\right. \\ &{} \cap \left. \left\{ \sup \limits _{0\le t\le T}|W_3(z(\sigma _{2k-1}+t))-W_3(z(\sigma _{2k-1}))|<\varepsilon \right\} \right) \\ > &{} \varepsilon \end{array} \end{aligned}$$
(5.309)

Set

$$\begin{aligned} \bar{\varOmega }_k=\left\{ \sup \limits _{0\le t\le T}|W_3(z(\sigma _{2k-1}+t))-W_3(z(\sigma _{2k-1}))|<\varepsilon \right\} \end{aligned}$$

Noting that

$$\begin{aligned} \sigma _{2k}(\omega )-\sigma _{2k-1}(\omega )\ge T~\mathrm{if}~\omega \in \{\sigma _{2k-1}<\infty , \tau _h=\infty \}\cap \bar{\varOmega }_k \end{aligned}$$

we derive from (5.305) and (5.309) that

$$\begin{aligned} \begin{array}{rl} \infty &{} > \varepsilon \sum \limits _{k=1}^{\infty }\mathbb {E}[I_{(\sigma _{2k-1}<\infty , \tau _h=\infty )}(\sigma _{2k}-\sigma _{2k-1})]\\ &{} \ge \varepsilon \sum \limits _{k=1}^{\infty }\mathbb {E}[I_{(\sigma _{2k-1}<\infty , \tau _h=\infty )\cap \bar{\varOmega }_k}(\sigma _{2k}-\sigma _{2k-1})]\\ &{} \ge \varepsilon T\sum \limits _{k=1}^{\infty }\mathbb {P}(\{\sigma _{2k-1}<\infty , \tau _h=\infty \}\cap \bar{\varOmega }_k)\\ &{} \ge \varepsilon T\sum \limits _{k=1}^{\infty }\varepsilon =\infty \end{array} \end{aligned}$$

which is a contradiction. So (5.297) must hold.

Step 4    To prove that \(\mathrm{Ker} (W_3)\not = \emptyset \) and

$$\begin{aligned} \lim \limits _{t\rightarrow \infty }d(x(t; \xi , i_0)-D(x(t-\tau ; \xi , i_0), r(t)), \mathrm{Ker} (W_3))=0~\textit{a.s.} \end{aligned}$$
(5.310)

By (5.297) and (5.296), we see that there is an \(\varOmega _0\subset \varOmega \) with \(\mathbb {P}(\varOmega _0)=1\) such that

$$\begin{aligned} \lim \limits _{t\rightarrow \infty }W_3(z(t, \omega ))=0~\mathrm{and}~\sup \limits _{0\le t<\infty }|z(t, \omega )|<\infty ~\forall \omega \in \varOmega _0 \end{aligned}$$
(5.311)

Choose any \(\omega \in \varOmega _0\). Then \(\{z(t, \omega )\}_{t\ge 0}\) is bounded in \(\mathbb {R}^n\), so there must be an increasing sequence \(\{t_k\}_{k\ge 1}\) such that \(t_k\rightarrow \infty \) and \(\{z(t_k, \omega )\}_{k\ge 1}\) converges to some \(\bar{z}\in \mathbb {R}^n\). Thus

$$\begin{aligned} W_3(\bar{z})=\lim \limits _{k\rightarrow \infty }W_3(z(t_k, \omega ))=0 \end{aligned}$$

which implies that \(\bar{z}\in \mathrm{Ker}(W_3)\) whence \(\mathrm{Ker} (W_3)\not = \emptyset \). From this, we can show that

$$\begin{aligned} \lim \limits _{t\rightarrow \infty }d(z(t, \omega ), \mathrm{Ker} (W_3))=0~\forall \omega \in \varOmega _0 \end{aligned}$$
(5.312)

If this is false, then there is some \(\bar{\omega }\in \varOmega _0\) such that

Hence, there is a subsequence \(\{z(t_k, \bar{\omega })\}_{k\ge 0}\) of \(\{z(t, \bar{\omega })\}_{t\ge 0}\) such that

$$\begin{aligned} \lim \limits _{k\rightarrow \infty }d(z(t_k, \bar{\omega }), \mathrm{Ker} (W_3))>\bar{\varepsilon } \end{aligned}$$

for some \(\bar{\varepsilon }>0\). Since \(\{z(t_k, \bar{\omega })\}_{k\ge 0}\) is bounded, we can find its subsequence \(\{z(\bar{t}_k, \bar{\omega })\}_{k\ge 0}\) which converges to \(\hat{z}\in \mathbb {R}^n\). Clearly, \(\hat{z}\not \in \mathrm{Ker} (W_3)\) so \(W_3(\hat{z})>0\).But, by (5.311),

$$\begin{aligned} W_3(\hat{z})=\lim \limits _{k\rightarrow \infty }W_3(z(\bar{t}_k, \bar{\omega }))=0 \end{aligned}$$

a contradiction. Hence, (5.312) must hold and (5.310) holds yet.

Step 5    To prove (R2).

Under the assume that

$$\begin{aligned} W_3(x)=0~\mathrm{if~ and ~only ~if}~x=0 \end{aligned}$$
(5.313)

we have \(\mathrm{Ker} (W_3)=\{0\}\). It then follows from (5.310) that

$$\begin{aligned} \lim \limits _{t\rightarrow 0}[x(t)-D(x(t-\tau ), r(t))]=\lim \limits _{t\rightarrow 0}z(t)=0~\textit{a.s.} \end{aligned}$$

But by (H2),

$$\begin{aligned} \begin{array}{rl} |x(t)| &{} \le |D(x(t-\tau ), r(t))|+|x(t)-D(x(t-\tau ), r(t))|\\ &{} \le \kappa |x(t-\tau )|+|x(t)-D(x(t-\tau ), r(t))| \end{array} \end{aligned}$$

where \(\kappa \in (0, 1)\) has been defined above. Letting \(t\rightarrow \infty \) we obtain that

This together with (5.295) yields

$$\begin{aligned} \lim \limits _{t\rightarrow \infty }|x(t)|=0~\textit{a.s.} \end{aligned}$$

which is the (5.264) and the proof is therefore completed.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhou, W., Yang, J., Zhou, L., Tong, D. (2016). Stability and Synchronization of Neutral-Type Neural Networks. In: Stability and Synchronization Control of Stochastic Neural Networks. Studies in Systems, Decision and Control, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47833-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47833-2_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47832-5

  • Online ISBN: 978-3-662-47833-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics