Skip to main content

Active Linking Attacks

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 2015 (MFCS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9235))

  • 902 Accesses

Abstract

We study linking attacks on communication protocols. We observe that an active attacker is strictly more powerful in this setting than previously-considered passive attackers. We introduce a formal model to reason about active linking attacks, formally define security against these attacks and give conditions for both security and insecurity of protocols. In addition, we introduce a composition-like technique that allows to obtain security proofs by only studying small components of a protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The purpose of the value t is only to give the adversary complete information about his actions in the protocol run so far in the function \( view \left( .\right) \) (see below).

  2. 2.

    Whether wait is available does not follow from \( view \left( s,\sigma \right) \). We can extend \( view \left( s,\sigma \right) \) with a flag for the availability of wait, for simplification we omit this.

  3. 3.

    One can without loss of generality assume that there is no variable x and an edge \(x\rightarrow g\) for the output node g of a flat protocol.

References

  1. Aho, A.V., Beeri, C., Ullman, J.D.: The theory of joins in relational databases. ACM Trans. Database Syst. 4(3), 297–314 (1979)

    Article  Google Scholar 

  2. Arapinis, M., Chothia, T., Ritter, E., Ryan, M.: Analysing unlinkability and anonymity using the applied pi calculus. In: CSF, pp. 107–121. IEEE Computer Society (2010)

    Google Scholar 

  3. Bhargavan, K., Corin, R., Fournet, C., Gordon, A.D.: Secure sessions for web services. ACM Trans. Inf. Syst. Secur. 10(2) (2007)

    Google Scholar 

  4. Backes, M., Maffei, M., Pecina, K., Reischuk, R.M.: G2C: cryptographic protocols from goal-driven specifications. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol. 6993, pp. 57–77. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Biryukov, A., Pustogarov, I., Weinmann, R.-P.: TorScan: tracing long-lived connections and differential scanning attacks. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 469–486. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Dong, N., Jonker, H., Pang, J.: Formal analysis of privacy in an ehealth protocol. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 325–342. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Eigner, F., Maffei, M.: Differential privacy by typing in security protocols. In: CSF, pp. 272–286. IEEE (2013)

    Google Scholar 

  8. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies. ACM Trans. Database Syst. 4(4), 455–469 (1979)

    Article  Google Scholar 

  9. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets. In: IEEE Symposium on Security and Privacy, pp. 111–125. IEEE Computer Society (2008)

    Google Scholar 

  10. Rusinowitch, M., Turuani, M.: Protocol insecurity with a finite number of sessions, composed keys is NP-complete. Theoret. Comput. Sci. 1–3(299), 451–475 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Schnoor, H., Woizekowski, O.: Active linkability attacks. CoRR, abs/1311.7236 (2014)

    Google Scholar 

  12. Sweeney, L.: Achieving \(k\)-anonymity privacy protection using generalization and suppression. Int. J. Fuzziness Knowl. Based Syst. 10(5), 571–588 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Veeningen, M., de Weger, B., Zannone, N.: Symbolic privacy analysis through linkability and detectability. In: Fernández-Gago, C., Martinelli, F., Pearson, S., Agudo, I. (eds.) Trust Management VII. IFIP AICT, vol. 401, pp. 1–16. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  14. Vollmer, H.: Introduction to Circuit Complexity - A Uniform Approach. Texts in theoretical computer science. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Schnoor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schnoor, H., Woizekowski, O. (2015). Active Linking Attacks. In: Italiano, G., Pighizzini, G., Sannella, D. (eds) Mathematical Foundations of Computer Science 2015. MFCS 2015. Lecture Notes in Computer Science(), vol 9235. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48054-0_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48054-0_46

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48053-3

  • Online ISBN: 978-3-662-48054-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics