Skip to main content

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 70))

  • 1302 Accesses

Abstract

In solanaceous crops, such as tomato, potato, pepper, and eggplant, continuous efforts to develop DNA markers and to construct linkage maps have been made by a number of researchers since the 1980s. The earliest such attempts were based on restriction fragment length polymorphisms, followed by PCR-based DNA markers (random amplified polymorphic DNA and amplified fragment length polymorphisms). More sophisticated sequence-tagged technologies such as simple sequence repeats and single nucleotide polymorphisms have enabled interspecific comparative analysis of linkage maps and related genomic information among solanaceous species. Biparental genetic analysis using DNA marker linkage maps provided useful information for developing selectable markers for practical breeding, especially for traits (such as vertical disease resistance) controlled by a single gene or a few major genes. For more complex traits (such as yield and fruit quality), map-based quantitative trait locus analysis has become a standard method for developing selectable markers, but it remains difficult to apply this technology to practical breeding. Marker-assisted genetic analysis and breeding by using comprehensive genome-wide information (genome-wide association studies and genomic selection) are expected to be a breakthrough in the improvement of agronomically important quantitative traits in these solanaceous crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrama HA, Scott JW (2006) Quantitative trait loci for Tomato yellow leaf curl virus and tomato mottle virus resistance in tomato. J Am Soc Hortic Sci 131:267–272

    CAS  Google Scholar 

  • Arnedo-Andrés MS, Gil-Ortega R, Luis-Arteaga M, Hormaza JI (2002) Development of RAPD and SCAR markers linked to the Pvr4 locus for resistance to PVY in pepper (Capsicum annuum L.). Theor Appl Genet 105:1067–1074

    Article  PubMed  Google Scholar 

  • Ashrafi H, Hill T, Stoffel K, Kozik A, Yao J, Chin-Wo SR, Van Deynze A (2012) De novo assembly of the pepper transcriptome (Capsicum annuum): a benchmark for in silico discovery of SNPs, SSRs and candidate genes. BMC Genomics 13:571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barchi L, Lanteri S, Portis E, Acquadro A, Valè G, Toppino L, Rotino GL (2011) Identification of SNP and SSR markers in eggplant using RAD tag sequencing. BMC Genomics 12:304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barchi L, Lanteri S, Portis E, Valè G, Volante A et al (2012) A RAD tag derived marker based eggplant linkage map and the location of QTLs determining anthocyanin pigmentation. PLoS One 7:e43740. doi:10.1371/journal.pone.0043740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behare J, Laterrot H, Sarfatti M, Zamir D (1991) Restriction fragment length polymorphism mapping of the Stemphylium resistance gene in tomato. Mol Plant Microbe Interact 4:489–492

    Article  CAS  Google Scholar 

  • Blum E, Mazourek M, O’Connell M, Curry J, Thorup T, Liu K, Jahn M, Paran I (2003) Molecular mapping of capsaicinoid biosynthesis genes and quantitative trait loci analysis for capsaicinoid content in Capsicum. Theor Appl Genet 108:79–86

    Article  CAS  PubMed  Google Scholar 

  • Brommonschenkel S, Tanksley S (1997) Map-based cloning of the tomato genomic region that spans the Sw-5 tospovirus resistance gene in tomato. Mol Gen Genet 256:121–126

    Article  CAS  PubMed  Google Scholar 

  • Chagué V, Mercier JC, Guénard M, Courcel AD, Vedel F (1997) Identification of RAPD markers linked to a locus involved in quantitative resistance to TYLCV in tomato by bulked segregant analysis. Theor Appl Genet 95:671–677

    Article  Google Scholar 

  • Dax E, Livneh O, Edelbaum O, Kedar N, Gavish N, Karchi H, Milo J, Sela I, Rabinowitch HD (1994) A random amplified polymorphic DNA (RAPD) molecular marker for the Tm-2 a gene in tomato. Euphytica 74:159–163

    Article  Google Scholar 

  • Dickinson MJ, Jones DA, Jones JD (1993) Close linkage between the Cf-2/Cf-5 and Mi resistance loci in tomato. Mol Plant Microbe Interact 6:341–347

    Article  CAS  PubMed  Google Scholar 

  • Diwan N, Fluhr R, Eshed Y, Zamir D, Tanksley SD (1999) Mapping of Ve in tomato: a gene conferring resistance to the broad-spectrum pathogen, Verticillium dahliae race 1. Theor Appl Genet 98:315–319

    Article  CAS  Google Scholar 

  • Doganlar S, Frary A, Daunay MC, Lester RN, Tanksley SD (2002) A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics 161:1697–1711

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ebana K, Shibaya T, Wu J, Matsubara K, Kanamori H et al (2011) Uncovering of major genetic factors generating naturally occurring variation in heading date among Asian rice cultivars. Theor Appl Genet 122:1199–1210

    Article  PubMed  PubMed Central  Google Scholar 

  • Foolad MR (2007) Genome mapping and molecular breeding of tomato. Intl J Plant Genomics 2007: Article ID 64358 doi:10.1155/2007/64358

    Google Scholar 

  • Foolad MR, Panthee DR (2012) Marker-assisted selection in tomato breeding. Crit Rev Plant Sci 31:93–123

    Article  Google Scholar 

  • Fradin EF, Zhang Z, Juarez-Ayala JC, Castroverde CDM, Nazar RN, Robb J, Liu CM, Thomma BPHJ (2009) Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiol 150:320–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci U S A 97:4718–4723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuoka H, Miyatake K, Negoro S, Nunome T, Ohyama A, Yamaguchi H (2008) Development of a routine procedure for single nucleotide polymorphism marker design based on the Tm-shift genotyping method. Breed Sci 58:461–464

    Article  CAS  Google Scholar 

  • Fukuoka H, Miyatake K, Nunome T, Negoro S, Shirasawa K, Isobe S, Asamizu E, Yamaguchi H, Ohyama A (2012) Development of gene-based markers and construction of an integrated linkage map in eggplant by using Solanum orthologous (SOL) gene sets. Theor Appl Genet 125:47–56

    Article  CAS  PubMed  Google Scholar 

  • Fulton TM, Van der Hoeven R, Eannetta NT, Tanksley SD (2002) Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14:1457–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haanstra JPW, Wye C, Verbakel H, Meijer-Dekens F, van den Berg P, Odinot P, van Heusden AW, Tanksley S, Lindhout P, Peleman J (1999) An integrated high-density RFLP-AFLP map of tomato based on two Lycopersicon esculentum × L. pennellii F2 populations. Theor Appl Genet 99:254–271

    Article  CAS  Google Scholar 

  • Hamblin MT, Buckler ES, Jannink JL (2011) Population genetics of genomics-based crop improvement methods. Trends Genet 27:98–106

    Article  CAS  PubMed  Google Scholar 

  • Hamilton JP, Sim S, Stoffel K, van Deynze A, Buell GR, Francis D (2012) Single nucleotide polymorphism discovery in cultivated tomato via sequencing by synthesis. Plant Genome 5:17–29

    Article  CAS  Google Scholar 

  • Hayes J, Bowman PJ, Chamberlain AJ, Goddard ME (2009) Invited review: genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92:433–443

    Article  CAS  PubMed  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Helentjaris T, Slocum M, Wright S, Schaefer A, Nienhuis J (1986) Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor Appl Genet 72:761–769

    Article  CAS  PubMed  Google Scholar 

  • Iwata H, Hayashi T, Tsumura Y (2011) Prospects for genomic selection in conifer breeding: a simulation study of Cryptomeria japonica. Tree Genet Genomes 7:747–758

    Article  Google Scholar 

  • Iwata H, Hayashi T, Terakami S, Takada N, Sawamura Y, Yamamoto T (2013) Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia. Breed Sci 63:125–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Jahn M, Paran I, Hoffmann K, Radwanski ER, Livingstone KD, Grube RC, Aftergoot E, Lapidot M, Moyer J (2000) Genetic mapping of the Tsw locus for resistance to the Tospovirus Tomato spotted wilt virus in Capsicum spp. and its relationship to the Sw-5 gene for resistance to the same pathogen in tomato. Mol Plant Microbe Interact 13:673–689

    Article  CAS  PubMed  Google Scholar 

  • Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9:166–177

    Article  CAS  PubMed  Google Scholar 

  • Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ, Jones JD (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266:789–793

    Article  CAS  PubMed  Google Scholar 

  • Kang BC, Yeam I, Frantz JD, Murphy JF, Jahn MM (2005) The pvr1 locus in Capsicum encodes a translation initiation factor eIF4E that interacts with Tobacco etch virus VPg. Plant J 42:392–405

    Article  CAS  PubMed  Google Scholar 

  • Kang WH, Hoang NH, Yang HB, Kwon JK, Jo SH, Seo JK, Kim KH, Choi D, Kang BC (2010) Molecular mapping and characterization of a single dominant gene controlling CMV resistance in peppers (Capsicum annuum L.). Theor Appl Genet 120:1587–1596

    Article  CAS  PubMed  Google Scholar 

  • Kawchuk LM, Hachey J, Lynch DR (1998) Development of sequence characterized DNA markers linked to a dominant Verticillium wilt resistance gene in tomato. Genome 41:91–95

    Article  CAS  PubMed  Google Scholar 

  • Kawchuk L, Hachey J, Lynch DR, Klcsar F, van Rooijen G et al (2001) Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci U S A 98:6511–6515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwok PY (2001) Methods for genotyping single nucleotide polymorphisms. Annu Rev Genomics Hum Genet 2:235–258

    Article  CAS  PubMed  Google Scholar 

  • Lim GTT, Wang GP, Hemming MN, Basuki S, McGrath DJ, Carroll BJ, Jones DA (2006) Mapping the I-3 gene for resistance for Fusarium wilt in tomato: application of an I-3 marker in tomato improvement and progress towards the cloning of I-3. Australas Plant Pathol 35:671–680

    Article  CAS  Google Scholar 

  • Liviak KJ, Marmaro J, Todd JA (1995) Towards fully automated genome-wide polymorphism screening. Nat Genet 9:341–342

    Article  Google Scholar 

  • Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith KP, Sorrells ME, Jannink JL (2011) Genomic selection in plant breeding: knowledge and prospects. Adv Agron 110:77–123

    Article  Google Scholar 

  • Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga H, Saito T, Hirai M, Nunome T, Yoshida T (2003) DNA markers linked to pepper mild mottle virus (PMMoV) resistant locus (L 4) in Capsicum. J Jpn Soc Hortic Sci 72:218–220

    Article  CAS  Google Scholar 

  • McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JPA, Hirschhorn JN (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9:356–369

    Article  CAS  PubMed  Google Scholar 

  • McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley SD (1988) Molecular mapping of rice chromosomes. Theor Appl Genet 76:815–829

    Article  CAS  PubMed  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Milbourne D, Pande B, Bryan GJ (2007) Potato. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 3, Pulses, sugar and tuber crops. Springer, Heidelberg, pp 205–236

    Google Scholar 

  • Miyatake K, Saito T, Negoro S, Yamaguchi H, Nunome T, Ohyama A, Fukuoka H (2012) Development of selective markers linked to a major QTL for parthenocarpy in eggplant (Solanum melongena L.). Theor Appl Genet 124:1403–1413

    Article  PubMed  Google Scholar 

  • Moury B, Pflieger S, Blattes A, Lefebvre V, Palloix A (2000) A CAPS marker to assist selection of tomato spotted wilt virus (TSWV) resistance in pepper. Genome 43:137–142

    Article  CAS  PubMed  Google Scholar 

  • Mutlu N, Boyaci FH, Göçmen M, Abak K (2008) Development of SRAP, SRAP-RGA, RAPD and SCAR markers linked with a Fusarium wilt resistance gene in eggplant. Theor Appl Genet 117:1303–1312

    Article  CAS  PubMed  Google Scholar 

  • Nicolai M, Pisani C, Bouchet JP, Vuylsteke M, Palloix A (2012) Discovery of a large set of SNP and SSR genetic markers by high-throughput sequencing of pepper (Capsicum annuum). Genet Mol Res 11:2295–2300

    Article  CAS  PubMed  Google Scholar 

  • Nunome T, Ishiguro K, Yoshida T, Hirai M (2001) Mapping of fruit shape and color development traits in eggplant (Solanum melongena L.) based on RAPD and AFLP markers. Breed Sci 51:19–26

    Article  CAS  Google Scholar 

  • Nunome T, Negoro S, Kono I, Kanamori H, Miyatake K, Yamaguchi H, Ohyama A, Fukuoka H (2009) Development of SSR markers derived from SSR-enriched genomic library of eggplant (Solanum melongena L.). Theor Appl Genet 119:1143–1153

    Article  PubMed  Google Scholar 

  • Ohmori T, Murata M, Motoyoahi F (1995) Identification of RAPD markers linked to the Tm-2 locus in tomato. Theor Appl Genet 90:307–311

    Article  CAS  PubMed  Google Scholar 

  • Ohyama A, Asamizu E, Negoro S, Miyatake K, Yamaguchi H, Tabata S, Fukuoka H (2009) Characterization of tomato SSR markers developed using BAC-end and cDNA sequences from genome databases. Mol Breed 23:685–691

    Article  CAS  Google Scholar 

  • Ortega F, Lopez-Vizcon C (2012) Application of molecular marker-assisted selection (MAS) for disease resistance in a practical potato breeding programme. Potato Res 55:1–13

    Article  CAS  Google Scholar 

  • Piatek AS, Tyagi S, Pol AC, Telenti A, Miller LP, Kramer FR, Allend D (1998) Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis. Nat Biotechnol 16:359–363

    Article  CAS  PubMed  Google Scholar 

  • Polans NO, Weeden NF, Thompson WF (1985) Inheritance, organization, and mapping of rbcS and cab multigene families in pea. Proc Natl Acad Sci U S A 82:5083–5087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranc N, Muños S, Xu J, Le Paslier MC, Chauveau A, Bounon R, Rolland S, Bouchet JP, Brunel D, Causse M (2012) Genome-wide association mapping in tomato (Solanum lycopersicum) is possible using genome admixture of Solanum lycopersicum var. cerasiforme. G3 2:853–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez GR, Muños S, Anderson C, Sim SC, Michel A, Causse M, Gardener BB, Francis D, van der Knaap E (2011) Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol 156:275–285

    Article  PubMed  PubMed Central  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U S A 81:8014–8018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarfatti M, Katan J, Fluhr R, Zamir D (1989) An RFLP marker in tomato linked to the Fusarium oxysporum resistance gene I2. Theor Appl Genet 78:755–759

    Article  CAS  PubMed  Google Scholar 

  • Sarfatti M, Abu-Abied M, Katan J, Zamir D (1991) RFLP mapping of I1, a new locus in tomato conferring resistance against Fusarium oxysporum f. sp. lycopersici race 1. Theor Appl Genet 82:22–26

    Article  CAS  PubMed  Google Scholar 

  • Saritnum O, Minami M, Matsushima K, Minamiyama Y, Hirai M, Baba T, Bansho H, Nemoto K (2008) Inheritance of few-pungent trait in chili pepper ‘S3212’ (Capsicum frutescens). J Jpn Soc Hortic Sci 77:265–269

    Article  Google Scholar 

  • Shirasawa K, Asamizu E, Fukuoka H, Ohyama A, Sato S et al (2010) An interspecific linkage map of SSR and intronic polymorphism markers in tomato. Theor Appl Genet 121:731–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirasawa K, Fukuoka H, Matsunaga H, Kobayashi Y, Kobayashi I, Hirakawa H, Isobe S, Tabata S (2013) Genome-wide association studies using single nucleotide polymorphism markers developed by re-sequencing of the genomes of cultivated tomato. DNA Res 20:593–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sim SC, Durstewitz G, Plieske J, Wieseke R, Ganal MW et al (2012a) Development of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS One 7:e40563. doi:10.1371/journal.pone.0040563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sim SC, Van Deynze A, Stoffel K, Douches DS, Zarka D et al (2012b) High-density SNP genotyping of tomato (Solanum lycopersicum L.) reveals patterns of genetic variation due to breeding. PLoS One 7:e45520. doi:10.1371/journal.pone.0045520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons G, Groenendijk J, Wijbrandi J, Reijans M, Groenen J et al (1998) Dissection of the Fusarium I-2 gene cluster in tomato reveals six homologs and one active gene copy. Plant Cell 10:1055–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sommer SS, Groszbach AR, Bottema CD (1992) PCR amplification of specific alleles (PASA) is a general method for rapidly detecting known single-base changes. Biotechniques 12:82–87

    CAS  PubMed  Google Scholar 

  • Stewart C Jr, Kang BC, Liu K, Mazourek M, Moore SL, Yoo EY, Kim BD, Paran I, Jahn MM (2005) The Pun1 gene for pungency in pepper encodes a putative acyltransferase. Plant J 42:675–688

    Article  CAS  PubMed  Google Scholar 

  • Sugita T, Yamaguchi K, Sugimura Y, Nagata R, Yuji K, Kinoshita T, Todoroki A (2004) Development of SCAR markers linked to L 3 gene in Capsicum. Breed Sci 54:111–115

    Article  CAS  Google Scholar 

  • Sugita T, Semi Y, Sawada H, Utoyama Y, Hosomi Y, Yoshimoto E, Haehata Y, Fukuoka H, Nagata R, Ohyama A (2013) Development of simple sequence repeat markers and construction of a high-density linkage map of Capsicum annuum. Mol Breed 31:909–920

    Article  CAS  Google Scholar 

  • Syvanen AC (2001) From gels to chips: “minisequencing” primer extension for analysis of point mutations and single nucleotide polymorphisms. Hum Mutat 13:1–10

    Article  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, DeVicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    CAS  PubMed  PubMed Central  Google Scholar 

  • The Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195

    Article  Google Scholar 

  • The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  Google Scholar 

  • Thomas CM, Jones DA, Parniske M, Harrison K, Balint-Kurti PJ, Hatzixanthis K, Jones JD (1997) Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell 9:2209–2224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toppino L, Valè G, Rotino GL (2008) Inheritance of Fusarium wilt resistance introgressed from Solanum aethiopicum Gilo and Aculeatum groups into cultivated eggplant (S. melongena) and development of associated PCR-based markers. Mol Breed 22:237–250

    Article  CAS  Google Scholar 

  • Verlaan MG, Hutton SF, Ibrahem RM, Kormelink R, Visser RGF, Scott JW, Edwards JD, Bai Y (2013) The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA-dependent RNA polymerases. PLoS Genet 9:e1003399. doi:10.1371/journal.pgen.1003399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D (2006) The genes of Capsicum. HortSci 41:1169–1187

    CAS  Google Scholar 

  • Wang J, Chuang K, Ahluwalia M, Patel S, Umblas N, Mirel D, Higuchi R, Germer S (2005) High-throughput SNP genotyping by single-tube PCR with Tm-shift primers. Biotechniques 39:885–893

    Article  CAS  PubMed  Google Scholar 

  • Williamson VM, Ho JY, Wu FF, Miller N, Kaloshian I (1994) A PCR-based marker tightly linked to the nematode resistance gene, Mi, in tomato. Theor Appl Genet 87:757–763

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Mueller LA, Crouzillat D, Petiard V, Tanksley SD (2006) Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: a test case in the euasterid plant clade. Genetics 174:1407–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu F, Eannetta NT, Xu Y, Durrett R, Mazourek M, Jahn MM, Tanksley SD (2009a) A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evolution in the genus Capsicum. Theor Appl Genet 118:1279–1293

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Eannetta NT, Xu Y, Tanksley SD (2009b) A detailed synteny map of the eggplant genome based on conserved ortholog set II (COSII) markers. Theor Appl Genet 118:927–935

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Eanetta NT, Xu Y, Plieske J, Ganal M, Pozzi C, Bakaher N, Tanksley SD (2009c) COSII genetics maps of two diploid Nicotiana species provide a detailed picture of synteny with tomato and insights into chromosome evolution in tetraploid N. tabacum. Theor Appl Genet 120:809–827

    Article  PubMed  Google Scholar 

  • Xu X, Liu X, Ge S, Jensen JD, Hu F et al (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 30:105–111

    Article  CAS  Google Scholar 

  • Yan J, Shah T, Warburton ML, Buckler ES, McMullen MD, Crouch J (2009) Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS One 4(12):e8451. doi:10.1371/journal.pone.0008451

    Article  PubMed  PubMed Central  Google Scholar 

  • Yano M, Kojima S, Takahashi Y, Lin H, Sasaki T (2001) Genetic control of flowering time in rice, a short-day plant. Plant Physiol 127:1425–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Huang S, Yang G, Guo J (2000) Two RAPD markers linked to a major fertility restorer gene in pepper. Euphytica 113:155–161

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Fukuoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fukuoka, H. (2016). DNA Markers in Solanaceae Breeding. In: Ezura, H., Ariizumi, T., Garcia-Mas, J., Rose, J. (eds) Functional Genomics and Biotechnology in Solanaceae and Cucurbitaceae Crops. Biotechnology in Agriculture and Forestry, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48535-4_4

Download citation

Publish with us

Policies and ethics