Skip to main content

Antikörper und Aptamere

  • Chapter
  • First Online:
Der Experimentator: Proteinbiochemie/Proteomics

Part of the book series: Experimentator ((EXPERIMENTATOR))

  • 15k Accesses

Zusammenfassung

Es ist immer eine gute Idee, Antikörper gegen ein gereinigtes Protein herzustellen. Antikörper ermöglichen Affinitätssäulen, Nachweistests, histologische Untersuchungen an Gewebeschnitten und das Screenen von Expressionsbanken. Sie informieren über die Lage eines Transmembranproteins in der Membran und über die Zusammensetzung und Stöchiometrie oligomerer Proteine. Lesen Sie, wie man Antikörper herstellt, bearbeitet, verarbeitet, pflegt und anwendet.

Zum Guten noch was Besseres: In bestimmten Fällen sind Aptamere den Antikörpern überlegen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Becker C-M et al (1989) Sensitive immunoassay shows selective association of peripheral and integral membrane proteins of the inhibitory glycine receptor complex. J Neurochem 53:124–131

    Article  CAS  PubMed  Google Scholar 

  • Berryman M, Bretscher A (2001) Immunoblot detection of antigens in immunoprecipitates. Biotechniques 4:744–746

    Google Scholar 

  • Brymora A et al (2001) Enhanced protein recovery and reproducibility from pull-down assays and immunoprecipitations using spin columns. Anal Biochem 295:119–122

    Article  CAS  PubMed  Google Scholar 

  • Bukovsky J, Kennet R (1987) Simple and rapid purification of monoclonal antibodies from cell culture supernatants and ascites fluids by hydroxyl apatite chromatography on analytical and preparative scales. Hybridoma 6:219–228

    Article  CAS  PubMed  Google Scholar 

  • Chan C et al (2004) Nanocrystal biolabels with releasable fluorophores for immunoassays. Anal Chem 76:3638–3645

    Article  CAS  PubMed  Google Scholar 

  • Chiles T et al (1987) Production of monoclonal antibodies to a low-abundance hepatic membrane protein using nitrocellulose immobilized protein as antigen. Anal Biochem 163:136–142

    Article  CAS  PubMed  Google Scholar 

  • Diano M et al (1987) A method for the production of highly specific antibodies. Anal Biochem 166:224–229

    Article  CAS  PubMed  Google Scholar 

  • Doolittle M et al (1991) A two-cycle immunoprecipitation procedure for reducing nonspecific protein contamination. Anal Biochem 195:364–368

    Article  CAS  PubMed  Google Scholar 

  • Dunbar B, Schwoebel E (1990) Preparation of polyclonal antibodies. Methods Enzymol 182:663–670

    Article  CAS  PubMed  Google Scholar 

  • Ey P et al (1978) Isolation of pure IgG1, IgG2a- and IgG2b-immunoglobulins from mouse serum using protein A-sepharose. Immunochemistry 15:429–436

    Article  CAS  PubMed  Google Scholar 

  • Frutos M et al (1996) Analytical Immunology. Methods Enzymol 270:82–101

    Article  PubMed  Google Scholar 

  • Gan S, Patel K (2013) Enzyme immunoassay and enzyme-linked immunosorbent assay. J Invest Dermatol 133:e12. doi:10.1038/jid.2013.287

    Article  Google Scholar 

  • Geumann C et al (2010) A sandwich enzyme-linked immunosorbent assay for the quantification of insoluble membrane and scaffold proteins. Anal Biochem 402:161–169

    Article  CAS  PubMed  Google Scholar 

  • Goers J et al (1987) An enzyme-linked immunoassay for lipoprotein lipase. Anal Biochem 166:27–35

    Article  CAS  PubMed  Google Scholar 

  • Grässel S et al (1989) Immunoprecipitation of labeled antigens with eupergit C1Z. Anal Biochem 180:72–78

    Article  PubMed  Google Scholar 

  • Gregorius K, Theisen M (2001) In situ deprotection: a method for covalent immobilization of peptides with well-defined orientation for use in solid phase immunoassays such as enzyme-linked immunosorbent assay. Anal Biochem 299:84–91

    Article  CAS  PubMed  Google Scholar 

  • Griffiths A et al (1993) Human anti-self antibodies with high specificity from phage display libraries. EMBO J 12:725–734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haasemann M et al (1991) Anti-idiotypic-antibodies bearing the internal image of a bradykinin epitope. J Immunol 147:3882–3892

    CAS  PubMed  Google Scholar 

  • Hammers C, Stanley J (2014) Antibody phage display: technique and applications. J Invest Dermatol 134:e17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hem A et al (1998) Saphenous vein puncture for blood sampling of the mouse, rat, hamster, gerbil, guinea pig, ferret and mink. Lab Anim 32:364–368

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa N (1978) Characterization of various nervous tissues of the chick embryos through responses to chronic application and immunocytochemistry of β-bungarotoxin. J Comp Neurol 180:449–466

    Article  CAS  PubMed  Google Scholar 

  • Hoppe-Seyler F et al (2004) Peptide aptamers: specific inhibitors of protein function. Curr Mol Med 4:529–538

    Article  CAS  PubMed  Google Scholar 

  • Jeanson A et al (1988) Preparation of reproducible alkaline phosphatase-antibody conjugates for enzyme immunoassay using a heterobifunctional linking agent. Anal Biochem 172:392–396

    Article  CAS  PubMed  Google Scholar 

  • Kaboord B, Perr M (2008) Isolation of proteins and protein complexes by immunoprecipitation. Methods Mol Biol 424:349–364

    Article  CAS  PubMed  Google Scholar 

  • Kanamori T et al (2014) PURE ribosome display and its application in antibody technology. Biochim Biophys Acta 1844:1925–1932

    Article  CAS  PubMed  Google Scholar 

  • Kemeny D (1994) ELISA – Anwendung des Enzyme Linked Immunosorbent Assay im biologisch/medizinischen Labor. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Kimoto M et al (2013) Generation of high affinity aptamers using an expanded genetic alphabet. Nat Biotechnol 31:453–457

    Article  CAS  PubMed  Google Scholar 

  • Kingan T (1989) A competitive enzyme-linked immunosorbent assay: application in the assay of peptides, steroids, and cyclic nucleotides. Anal Biochem 183:283–289

    Article  CAS  PubMed  Google Scholar 

  • Kleyman TR et al (1991) Characterization and cellular localization of the epithelial Na+ channel. Studies using an anti-Na+ channel antibody raised by an antiidiotypic route. J Biol Chem 266:3907–3915

    CAS  PubMed  Google Scholar 

  • Klundt E (2001) Tipps für Blutsauger. Laborjournal 11:61

    Google Scholar 

  • Kussie P et al (1989) Production and characterization of monoclonal idiotypes and anti-idiotypes for small ligands. Methods Enzymol 178:49–63

    Article  CAS  PubMed  Google Scholar 

  • Kwan S et al (1987) An enzyme immunoassay for the quantitation of dihydropteridin reductase. Anal Biochem 164:391–396

    Article  CAS  PubMed  Google Scholar 

  • Ladjemi M (2012) Anti-idiotypic antibodies as cancer vaccines: achievements and future improvements. Front Oncol 2:158

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Langone J, Vunakis H (1986) Immunochemical techniques. Part I: Hybridoma technology and monoclonal antibodies. Methods Enzymol 121:1–947

    Google Scholar 

  • Li J et al (2011) Peptide aptamers with biological and therapeutic applications. Curr Med Chem 18:4215–4222

    Article  CAS  PubMed  Google Scholar 

  • Lui M et al (1996) Methodical analysis of protein-nitrocellulose interactions to design a refined digestion protocol. Anal Biochem 241:156–166

    Article  CAS  PubMed  Google Scholar 

  • Marks J et al (1992) Molecular evolution of proteins on filamentous phage. J Biol Chem 267:16007–16010

    CAS  PubMed  Google Scholar 

  • Mayer G (2009) The chemical biology of aptamers. Angew Chem Int Ed 48:2672–2689

    Article  CAS  Google Scholar 

  • Morris K et al (1998) High affinity ligands from in vitro selection: complex targets. Proc Natl Acad Sci USA 95:2902–2907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moser A, Hage D (2010) Immunoaffinity chromatography: an introduction to applications and recent developments. Bioanalysis 2:769–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nissim A et al (1994) Antibody fragments from a single pot phage display library as immunochemical reagents. EMBO J 13:692–698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parker C (1990) Immunoassays. Methods Enzymol 182:700–718

    Article  CAS  PubMed  Google Scholar 

  • Parker J et al (1986) New hydrophilicity scale derived from HPLC peptide retention data: correlation of predicted surface residues with antigenicity and X-ray derived accessible sites. Biochemistry 25:5425–5432

    Article  CAS  PubMed  Google Scholar 

  • Peltz G et al (1987) Monoclonal antibody immunoprecipitation of cell membrane glycoproteins. Anal Biochem 167:239–244

    Article  CAS  PubMed  Google Scholar 

  • Platt E et al (1986) Highly sensitive immunoadsorption procedure for detection of low-abundance proteins. Anal Biochem 156:126–135

    Article  CAS  PubMed  Google Scholar 

  • Plückthun A (2012) Ribosome display: a perspective. Methods Mol Biol 805:3–28

    Article  PubMed  Google Scholar 

  • Plückthun A (2015) Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics and therapy. Annu Rev Pharmacol Toxicol 55:489–511

    Article  PubMed  Google Scholar 

  • Posnett D et al (1988) A novel method for producing anti-peptide antibodies. J Biol Chem 263:1719–1725

    CAS  PubMed  Google Scholar 

  • Sakamoto J, Campbell K (1991) A monoclonal antibody to the β-subunit of the skeletal muscle dihydropyridine receptor immunoprecipitates the brain ω-conotoxin GVIA receptor. J Biol Chem 266:18914–18919

    CAS  PubMed  Google Scholar 

  • Schick M, Kennedy R (1989) Production and characterization of anti-idiotypic antibody reagents. Methods Enzymol 178:36–48

    Article  CAS  PubMed  Google Scholar 

  • Schlapschy M et al (2013) PASylation: a biological alternative to PEGylation for extending the plasma half-life of pharmaceutically active proteins. Protein Eng Des Sel 26:489–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider C et al (1982) A one-step purification of membrane proteins using a high efficiency immunomatrix. J Biol Chem 257:10766–10769

    CAS  PubMed  Google Scholar 

  • Seguela P et al (1984) Antibodies against y-aminobutyric acid: specificity studies and immuno-cytochemical results. Proc Natl Acad Sci USA 81:3888–3892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith C et al (1989) Sodium dodecyl sulfate enhancement of quantitative immunoenzyme dot-blot assays on nitrocellulose. Anal Biochem 177:212–219

    Article  CAS  PubMed  Google Scholar 

  • Theis M et al (2004) Discriminatory aptamer reveals serum response element transcription regulated by cytohesin-2. Proc Natl Acad Sci USA 101:11221–11226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tijssen P, Kurstak E (1984) Highly efficient and simple methods for the preparation of peroxidase and active peroxidase-antibody conjugates for enzyme immunoassays. Anal Biochem 136:451–457

    Article  CAS  PubMed  Google Scholar 

  • Trau D et al (2002) Nanoencapsulated microcrystalline particles for superamplified biochemical assays. Anal Chem 74:5480–5486

    Article  CAS  PubMed  Google Scholar 

  • Varghese S, Christakos S (1987) A quantitative immunobindung assay for vitamin D dependent calcium binding protein (calbindin-D28K) using nitrocellulose filters. Anal Biochem 165:183–189

    Article  CAS  PubMed  Google Scholar 

  • Wang J (1988) Antibodies for phosphotyrosine: analytical and preparative tool for tyrosyl-phosphorylated proteins. Anal Biochem 172:1–7

    Article  CAS  PubMed  Google Scholar 

  • Wiedenmann B et al (1988) Fractionation of synaptophysin-containing vesicles from rat brain and cultured PC12 pheochromocytoma cells. FEBS Lett 240:71–77

    Article  CAS  PubMed  Google Scholar 

  • Wolfe C, Hage D (1995) Studies on the rate and control of antibody oxidation by periodate. Anal Biochem 231:123–130

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka H et al (1987) An assay of collagenase activity using enzyme-linked immunosorbent assay for mammalian collagenase. Anal Biochem 166:172–177

    Article  CAS  PubMed  Google Scholar 

  • Zhiri A et al (1987) A new enzyme immunoassay of microsomal rat liver epoxid hydrolase. Anal Biochem 163:298–302

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Rehm .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rehm, H., Letzel, T. (2016). Antikörper und Aptamere. In: Der Experimentator: Proteinbiochemie/Proteomics. Experimentator. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48851-5_6

Download citation

Publish with us

Policies and ethics