Skip to main content

Versatile Archimedean Tilings Self-Assembled from Combined Symmetric DNA Motifs

  • Conference paper
  • First Online:
Bio-Inspired Computing -- Theories and Applications (BIC-TA 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 562))

Included in the following conference series:

  • 1932 Accesses

Abstract

Tilings formed with convex regular polygons are known as k-uniform tilings if there are precisely k different kinds of vertices in the tiling. Archimedes tilings with one kind of vertex are known as 1-uniform tilings. Here we propose a strategy that combines two types of symmetric DNA junction tiles to create two kinds of Archimedean tilings (3,3,3,3,6 and 3,6,3,6) respectively, where there are many influence factors, such as the arm length ratios and stick-ends interactions between two motifs, sequences in arms and stick-ends, the mole concentration ratios between the internal and external of motifs. Archimedean tilings show periodic polygonal tessellations which have fine geometrical symmetry, so we can locate AuNPs, fluoresceins and other biomarkers to different sites in planar structures. These biomarkers assist in revealing various observations under the microscope. Besides, it is expected to produce conductivity, fluorescence and Raman Effect in different levels with the help of biomarkers. In addition, these self-assembly Archimedean Tilings have potential to form quasi-crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fu, T.J., Seeman, N.C.: DNA double-crossover molecules. Biochemistry 32(13), 3211–3220 (1993)

    Article  Google Scholar 

  2. Song, T., Pan, L., Jiang, K., et al.: Normal forms for some classes of sequential spiking neural P systems. IEEE Trans. NanoBiosci. 12(3), 255–264 (2013)

    Article  Google Scholar 

  3. LaBean, T.H., Yan, H., Kopatsch, J.: Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc. 122(9), 1848–1860 (2000)

    Article  Google Scholar 

  4. Yan, H., Park, S.H., Finkelstein, G.: DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301(5641), 1882–1884 (2003)

    Article  Google Scholar 

  5. He, Y., Ye, T., Su, M.: Hierarchical self-assembly of DNA into symemetric supramolecular polyhedra. Nature 452(7184), 198–201 (2008)

    Article  Google Scholar 

  6. He, Y., Tian, Y., Ribbe, A.E.: Highly connected two-dimensional crystals of DNA six-Point-Stars. J. Am. Chem. Soc. 128(50), 15978–15979 (2006)

    Article  Google Scholar 

  7. Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spiking strategy. IEEE Trans. NanoBiosci. 14(4), 465–477 (2015)

    Article  Google Scholar 

  8. He, Y., Chen, Y., Liu, H.: Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J. Am. Chem. Soc. 127(35), 12202–12203 (2005)

    Article  Google Scholar 

  9. Shi, X.L., Lu, W., Wang, Z.: Programmable DNA tile self-assembly using a hierarchical sub-tile strategy. Nanotechnology 25(7), 075602 (2014)

    Article  Google Scholar 

  10. Park, S.H., Pistol, C., Ahn, S.J.: Finite-size, fully addressable DNA tile lattices formed by hierarchical assembly procedures. Angew. Chem. 45(5), 735–749 (2006)

    Article  Google Scholar 

  11. Liu, Y., Ke, Y., Yan, H.: Self-assembly of symmetric finite-size DNA nanoarrays. J. Am. Chem. Soc. 127(49), 17140–17141 (2005)

    Article  Google Scholar 

  12. Park, S.H., Finkelstein, G., LaBean, T.H.: Stepwise self-assembly of DNA tile lattices using dsDNA bridges. J. Am. Chem. Soc. 130(1), 40–41 (2008)

    Article  Google Scholar 

  13. Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spikes consumption strategy. IEEE Trans. NanoBiosci. 14(1), 38–44 (2015)

    Article  Google Scholar 

  14. Song, T., Pan, L., Păun, G.: Asynchronous spiking neural P systems with local synchronization. Inf. Sci. 219, 197–207 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang, X., Pan, L., Paun, A.: On the universality of axon P systems. IEEE Trans. Neural Netw. Learn. Syst. 26, 2816–2829 (2015). doi:10.1109/tnnls.2015.2396940

    Article  MathSciNet  Google Scholar 

  16. Mathieu, F., Liao, S.P., Kopatsch, J.: Six-helix bundles designed from DNA. Nano Lett. 5(4), 661–665 (2005)

    Article  Google Scholar 

  17. Ke, Y., Liu, Y., Zhang, J., Yan, H.: A study of DNA tube formation mechanisms using 4-, 8-, and 12-helix DNA nanostructures. J. Am. Chem. Soc. 128(13), 4414–4421 (2006)

    Article  Google Scholar 

  18. Wilner, O.I., Orbach, R., Henning, A.: Self-assembly of DNA nanotubes with controllable diameters. Nat. Commun. 2, 540 (2011)

    Article  Google Scholar 

  19. Qian, H., Tian, C., Yu, J.W.: Self-assembly of DNA nanotubes with defined diameters and lengths. Small 10(5), 855–858 (2014)

    Article  Google Scholar 

  20. Shi, X., Wang, Z., Deng, C., Song, T., Pan, L., Chen, Z.: A novel bio-sensor based on DNA strand displacement. PLoS One 9, e108856 (2014)

    Article  Google Scholar 

  21. Zhang, C., Ko, S.H., Su, M., et al.: Symmetry controls the face geometry of DNA polyhedra. J. Am. Chem. Soc. 131(4), 1413–1415 (2009)

    Article  Google Scholar 

  22. Zhang, C., Su, M., He, Y.: Conformational flexibility facilitates self-assembly of complex DNA nanostructures. PNAS 105(31), 10665–10669 (2008)

    Article  Google Scholar 

  23. Li, Y.L., Liu, Z.Y., Yu, G.M.: Self-assembly of molecule-like nanoparticle clusters directed by DNA nanocages. J. Am. Chem. Soc. 135(20), 7458–7461 (2013)

    Article  Google Scholar 

  24. Woo, M., Neider, J., Davis, T.: OpenGL Architecture Review Board, OpenGL Programming Guide: The Official Guide to Learning OpenGL, 3rd edn. Addison-Wesley, Reading (1999). Version 1.2

    Google Scholar 

  25. Song, T., Pan, L., Wang, J., et al.: Normal forms of spiking neural P systems with anti-spikes. IEEE Trans. NanoBiosci. 11(4), 352–359 (2012)

    Article  Google Scholar 

  26. Ball, W.W.R., Coxeter, H.S.M.: Mathematical Recreations and Essays. Dover, New York (1987). pp. 127–128

    Google Scholar 

  27. Ghyka, M.: The Geometry of Art and Life. Dover, New York (1977)

    MATH  Google Scholar 

  28. Wells, D.: The Penguin Dictionary of Curious and Interesting Geometry. Penguin, London (1991). pp. 57–58

    MATH  Google Scholar 

  29. Zhang, F., Liu, Y., Yan, H.: Complex Archimedean tiling self-assembled from DNA nanostructures. J. Am. Chem. Soc. 135(20), 7458–7461 (2013)

    Article  Google Scholar 

  30. Li, Y.L., Tian, C., Liu, Z.Y.: Structural transformation: assembly of an otherwise inaccessible DNA nanocage. Angew. Chem. 54(20), 5990–5993 (2015)

    Article  Google Scholar 

  31. Tian, C., Li, X., Liu, Z.Y.: Directed self-assembly of DNA tiles into complex nanocages. Angew. Chem. 53(31), 8179–8182 (2014)

    Article  Google Scholar 

  32. Mikhael, J., Roth, J., Helden, L.: Archimedean-like tiling on decagonal quasicrystalline surfaces. Nature 454, 501–504 (2008)

    Article  Google Scholar 

  33. Williams, R.: The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover, New York (1979). pp. 35–43

    Google Scholar 

  34. Păun, G.: Membrane Computing: An Introduction. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 61472371,61472372), Basic and Frontier Technology Research Program of Henan Province (Grant Nos. 142300413214), Program for Science and Technology Innovation Talents in Universities of Henan Province (No. 15HASTIT019), and Young Backbone Teachers Project of Henan province (Grant No. 2013GGJS-106), and Innovation Scientists and Technicians Troop Construction Projects of Henan Province (154200510012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuncai Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cui, G., Zheng, W., Zhang, X., Wang, Y. (2015). Versatile Archimedean Tilings Self-Assembled from Combined Symmetric DNA Motifs. In: Gong, M., Linqiang, P., Tao, S., Tang, K., Zhang, X. (eds) Bio-Inspired Computing -- Theories and Applications. BIC-TA 2015. Communications in Computer and Information Science, vol 562. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49014-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49014-3_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49013-6

  • Online ISBN: 978-3-662-49014-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics