Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 920))

  • 2465 Accesses

Abstract

In this chapter the Gaussian random matrix ensembles are investigated. We determine their Green’s functions and show that for small energy differences a soft mode appears. As a consequence, the non-linear sigma-model is introduced and the level correlations are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Bohigas, M.J. Gianoni, C. Schmitt, Characterization of chaotic quantum spectra and universality of level fluctuation laws. Phys. Rev. Lett. 52, 1 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  2. O. Bohigas, H.-A. Weidenmüller, History - an overview, in Handbook of Random Matrix Theory, ed. by G. Akeman, J. Baik, P. di Francesco (Oxford University Press, Oxford, 2011), p. 15

    MATH  Google Scholar 

  3. F.J. Dyson, Statistical theory of energy levels of complex systems. I, II, III. J. Math. Phys. 3, 140, 157, 166 (1962)

    Google Scholar 

  4. F.J. Dyson, The threefold way. Algebraic structure of symmetry groups and ensembles in quantum mechanics. J. Math. Phys. 3,1199 (1962)

    MathSciNet  MATH  Google Scholar 

  5. F.J. Dyson, M.L. Mehta, Statistical theory of energy levels of complex systems. IV, V. J. Math. Phys. 4, 701, 713 (1963)

    Google Scholar 

  6. K.B. Efetov, Supersymmetry method in localization theory. Zh. Eksp. Teor. Fiz. 82, 872 (1982); Sov. Phys. JETP 55, 514 (1982)

    Google Scholar 

  7. K.B. Efetov, Supersymmetry and theory of disordered metals. Adv. Phys. 32, 53 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  8. K.B. Efetov, Supersymmetry in Disorder and Chaos (Cambridge University Press, Cambridge, 1997)

    MATH  Google Scholar 

  9. K.B. Efetov, A.I. Larkin, D.E. Khmel’nitskii, Interaction of diffusion modes in the theory of localization. Zh. Eksp. Teor. Fiz. 79, 1120 (1980); Sov. Phys. JETP 52, 568 (1980)

    Google Scholar 

  10. L. Erdös, Universality of Wigner random matrices: a survey of recent results. arXiv:1004.0861 [math-ph]; Russ. Math. Surv. 66, 507 (2011)

    Google Scholar 

  11. Y.V. Fyodorov, On Hubbard-Stratonovich transformations over hyperbolic domains. J. Phys. Condens. Matter 17, S1915 (2005)

    Article  ADS  Google Scholar 

  12. Y.V. Fyodorov, Y. Wei, M.R. Zirnbauer, Hyperbolic Hubbard-Stratonovich transformations made rigorous. J. Math. Phys. 49, 053507 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. T. Guhr, A. Müller-Groehling, H.A. Weidenmüller, Random-matrix theories in quantum physics: common concepts. Phys. Rep. 299, 189 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Houghton, A. Jevicki, R.D. Kenway, A.M.M. Pruisken, Noncompact σ models and the existence of a mobility edge in disordered electronic systems near two dimensions. Phys. Rev. Lett. 45, 394 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  15. A.J. McKane, Reformulation of n → 0 models using anticommuting scalar fields. Phys. Lett. A 76, 22 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  16. A.J. McKane, M. Stone, Localization as an alternative to Goldstone’s theorem. Ann. Phys. 131, 36 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  17. M.L. Mehta, Random Matrices and the Statistical Theory of Energy Levels (Academic, New York, 1967)

    MATH  Google Scholar 

  18. M.L. Mehta, Random Matrices (Academic, Boston, 1991)

    MATH  Google Scholar 

  19. A.D. Mirlin, Statistics of energy levels and eigenfunctions in disordered and chaotic systems: supersymmetry approach, in Proceedings of the International School of Physics “Enrico Fermi” on New Directions in Quantum Chaos, Course CXLIII, ed. by G. Casati, I. Guarneri, U. Smilansky (IOS Press, Amsterdam, 2000), p. 223

    Google Scholar 

  20. G.E. Mitchell, A. Richter, H.A. Weidenmüller, Random matrices and chaos in nuclear physics: nuclear reactions. Rev. Mod. Phys. 82, 2845 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. J. Müller-Hill, M.R. Zirnbauer, Equivalence of domains for hyperbolic Hubbard-Stratonovich transformations. J. Math. 22 (2011). arXiv:1011.1389 053506

    Google Scholar 

  22. C.E. Porter, Statistical Theories of Spectra (Academic, London, 1965)

    Google Scholar 

  23. A.M.M. Pruisken, L. Schäfer, Field theory and the Anderson model for disordered electronic systems. Phys. Rev. Lett. 46, 490 (1981)

    Article  ADS  Google Scholar 

  24. A.M.M. Pruisken, L. Schäfer, The Anderson model for electron localisation non-linear σ model, asymptotic gauge invariance. Nucl. Phys. B 200 [FS4], 20 (1982)

    Google Scholar 

  25. L. Schäfer, F. Wegner, Disordered system with n orbitals per site: Lagrange formulation, hyperbolic symmetry, and Goldstone modes. Z. Phys. B 38, 113 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  26. J.J.M. Verbaarschot, H.A. Weidenmüller, M.R. Zirnbauer, Grassmann integration in stochastic quantum physics: the case of compound-nucleus scattering. Phys. Rep. 129, 367 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  27. J.J.M. Verbaarschot, M.R. Zirnbauer, Critique of the replica trick. J. Phys. A 17, 1093 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  28. F. Wegner, The mobility edge problem: continuous symmetry and a conjecture. Z. Phys. B 35, 207 (1979)

    Article  ADS  Google Scholar 

  29. Y. Wei, Y.V. Fyodoroy, A conjecture on Hubbard-Stratonovich transformations for the Pruisken-Schäfer parameterizations of real hyperbolic domains. J. Phys. A 40, 13587 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. H.A. Weidenmüller, G.E. Mitchell, Random matrices and chaos in nuclear physics: nuclear structure. Rev. Mod. Phys. 81, 539 (2009)

    Article  ADS  Google Scholar 

  31. E.P. Wigner, On a class of analytic functions from the quantum theory of collisions. Ann. Math. 53, 36 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  32. E.P. Wigner, On the distribution of the roots of certain symmetric matrices. Ann. Math. 67, 325 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  33. E.P. Wigner, Results and theory of resonance absorption, in Gatlinburg Conf. on Neutron Physics, Oak Ridge Natl. Lab. Rept. No. ORNL-2309 (1957) 59; reprint in C.E. Porter, Statistical Theories of Spectra (Academic, London, 1965)

    Google Scholar 

  34. E.P. Wigner, Random matrices in physics. SIAM Rev. 9, 1 (1967)

    Article  ADS  MATH  Google Scholar 

  35. M.R. Zirnbauer, Supersymmetry for systems with unitary disorder: circular ensembles. J. Phys. A 29, 7113 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wegner, F. (2016). Random Matrix Theory. In: Supermathematics and its Applications in Statistical Physics. Lecture Notes in Physics, vol 920. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49170-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49170-6_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49168-3

  • Online ISBN: 978-3-662-49170-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics