Skip to main content

Alternative Interpretationen der Quantenmechanik

  • Chapter
  • First Online:
Quanten – Evolution – Geist
  • 3669 Accesses

Zusammenfassung

Die bereits erwähnten Widerstände gegen die Aufgabe des Ideals der klassischen Naturbeschreibung haben zahlreiche Forscher und Denker dazu gebracht, alternative Deutungsmuster zur Kopenhagener Deutung vorzuschlagen. Die wichtigsten sollen hier vorgestellt werden; wobei die Auswahl natürlich ein wenig willkürlich ist, aber trotzdem nicht nur die bekanntesten und einflussreichsten, sondern auch ein paar der unbekannteren, aber dennoch interessanten Interpretationen beinhaltet. Zur Gültigkeit dieser Interpretationen sei angemerkt, dass es jedem einzelnen Forscher natürlich vorbehalten ist, seine eigene, private Interpretation beizubehalten, solange diese ihm bei seiner Forschung dienlich ist. Es kann ja nur im Sinne der Wissenschaft sein, eine Vielfalt von Motiven und Motivationen in die wissenschaftliche Arbeit einfließen zu lassen und dadurch eine heuristische Breite zu erreichen, die durch eine übermäßig einseitige Sichtweise oder Anschauung verloren ginge. Für die philosophische Reflexion jedoch ist eine das gesamte Theoriegebäude berücksichtigende Schärfe erforderlich, die auf den heuristischen Aspekt lediglich als solchen Bezug nehmen und keine Verallgemeinerungen aus ihm ziehen kann.

Es gibt nacheinander und nebeneinander unzählig viele Welten. (Anaximander )

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Zu den wichtigsten Interpretationen der Quantenmechanik siehe Baumann und Sexl (1984). Zum Stand der akademischen Debatte in der Philosophie der Physik vergleiche Esfeld (2012).

  2. 2.

    Diese These hat Paul Forman ausgearbeitet, u. a. in Forman (1971); in neuerer Zeit wird sie etwa von James Cushing vertreten, etwa in Cushing (1993).

  3. 3.

    Auf die etwas esoterischeren Ansätze wie z. B. die „many-minds-Interpretation “ können wir hier nicht näher eingehen. An dieser Stelle sei auch an Karl Poppers Interpretationsansatz erinnert, der eine realistische Ensemble-Interpretation vorschlug. Dieser Weg führte jedoch in die Irre, da Popper die Wellenfunktion als klassisch-statistische Verteilungsfunktion interpretierte, wobei er jedoch die unausweichlichen Korrelationen übersah, siehe Popper (1967); diesen Ansatz kritisiert hat u. a. Erhard Scheibe in Scheibe (1974), vergleiche auch Kap. 2.10

  4. 4.

    Eine Diskussion einiger wichtiger Interpretationen und eine präzise, technische Behandlung ihrer theoretischen Grundlagen findet sich bei d’Espagnat (1989).

  5. 5.

    Aus diesem Grund spricht man auch von „Relativer-Zustands-Interpretation“. Beim EPR-Experiment etwa sind die wechselseitigen Abhängigkeiten der korrelierten Teilchen relativ zueinander bestimmt, auch wenn wir keine sichere Vorhersage über den Messausgang machen können; siehe Everett (1957).

  6. 6.

    Siehe hierzu den Band DeWitt und Graham (1973); er enthält auch Everetts Aufsatz: Everett (1973).

  7. 7.

    Nach dem Scholastiker Wilhelm von Ockham ist es ratsam, beim Vorliegen mehrerer Theorien für ein bestimmtes Phänomen derjenigen Erklärung den Vorzug zu geben, die mit der geringsten Anzahl an Annahmen auskommt.

  8. 8.

    Wir werden uns im folgenden Kap. 6 mit den relativistischen Erweiterungen der Quantenmechanik befassen.

  9. 9.

    Stöckler (1989), S. 148.

  10. 10.

    Diese Ansätze firmierten noch unter dem Namen „Pilotwellentheorie “, siehe de Broglie (1927).

  11. 11.

    Bohm (1952a,b).

  12. 12.

    Der Gegenbeweis zum bereits erwähntem von neumannschen Theorem über die Unmöglichkeit einer Theorie mit verborgenen Parametern lag zu diesem Zeitpunkt noch nicht vor, bzw. war Grete Hermanns Analyse in Vergessenheit geraten.

  13. 13.

    Bell (1987), S. 160.

  14. 14.

    Eine kurze formale Einführung mit einem vielsagenden Titel liefern Dürr et al. (1995).

  15. 15.

    Diese These vertritt etwa Andrew Cross in Cross (1991). Im Zuge der McCarthyschen Hexenjagd verlor übrigens auch Bohm als ehemaliger Mitarbeiter Oppenheimers die Arbeitserlaubnis in den USA und ging dann nach Israel und England.

  16. 16.

    Die Führungswelle verletzt aber zumindest nicht ein wichtiges Gebot der Relativitätstheorie: Man kann mit ihrer Hilfe keine Informationen überlichtschnell übertragen, da der Anfangszustand prinzipiell unbekannt ist und der Empfänger deshalb nur statistisches Rauschen aus seinen Daten herauslesen könnte. Diese Bedeutung des Quantengleichgewichtes für die Verschleierung der nichtlokalen Eigenschaften der bohmschen Mechanik hat Antony Valentini herausgearbeitet, siehe Valentini (1991).

  17. 17.

    Es ist allerdings gelungen, eine quantenfeldtheoretische Erweiterung der bohmschen Mechanik zu formulieren und Erzeugungs- und Vernichtungsprozesse von Teilchen darstellbar zu machen. Im Bild der bohmschen Mechanik müssten viele der dort gemachten Aussagen anders dargestellt werden und ein explizites Teilchenbild der Elementarteilchen benutzt werden. Noch gibt es deshalb sehr viel Arbeit zu tun, bis von einer prognostischen Äquivalenz der bohmschen Mechanik mit der Standarddarstellung der relativistischen Quantenfeldtheorie gesprochen werden kann. Insbesondere die Probleme mit der Lorentz-Invarianz sind weit von einer befriedigenden Lösung entfernt. Zur quantenfeldtheoretischen Erweiterung der bohmschen Mechanik siehe Dürr et al. (2004) sowie Dürr et al. (2005). Die Probleme mit der Lorentz-Invarianz realistischer Deutungen der Quantenphysik behandelt Maudlin (1994).

  18. 18.

    Diese Analyse liefern Dürr et al. (1992).

  19. 19.

    Bell (1982).

  20. 20.

    Bohm und Hiley (1993).

  21. 21.

    Die Diskussion seines Standpunktes bezieht sich hauptsächlich auf die Darstellung in d’Espagnat (19831995) sowie in seinem umfassenden Werk über Physik und Philosophie d’Espagnat (2006). Eine ausführliche Behandlung der technischen Methoden und Kritik an diversen ontologischen Interpretationen findet sich bei d’Espagnat (1989). Den Begriff der „verschleierten“ Realität hat d’Espagnat wohl bei Einstein entlehnt. Als de Broglie in seiner Dissertation das revolutionäre Postulat vorstellte, dass Teilchen auch Welleneigenschaften zuzuschreiben seien, was von vielen Zeitgenossen als unglaubwürdig oder gar lächerlich angesehen wurde, sandte sein Lehrer in Paris, Paul Langevin , diese Dissertation an Einstein mit der Bitte um eine Stellungnahme. Dieser war von dem Ansatz entzückt und bemerkte, de Broglie habe „eine Ecke des großen Schleiers gelüftet.“

  22. 22.

    An dieser Stelle müssen wir einige klärende Anmerkungen zur Semantik machen, um den häufig durch unterschiedliche Begriffsdefinitionen bewirkten Verwirrungen zu entgehen. So hat Roberto Giuntini zeigen können, dass – wie nach den bisherigen Betrachtungen nicht anders zu erwarten – sich die Aussagen der Quantenmechanik nicht in einer der klassischen Physik entsprechenden Realsemantik ausdrücken lassen und man stattdessen nur noch eine Prozesssemantik aufstellen kann, die in Übereinstimmung mit der orthodoxen Interpretation den Begriff des Messens beinhaltet. Hieraus schließt Peter Mittelstaedt , dass es eine verborgene, verschleierte Realität nicht geben kann. Dies trifft auf den von d’Espagnat benutzten Begriff einer verschleierten Realität allerdings nicht zu, da beide etwas vollkommen Unterschiedliches mit diesem Ausdruck implizieren. Nach mittelstaedtscher Sichtweise ist diese verschleierte Realität ein mittels klassischer Konzepte beschreibbarer, in Einzelobjekte zerlegbarer Hintergrund, der Träger stark objektivierbarer Eigenschaften ist, die sich bloß unserer Kenntnis entziehen; sei es aufgrund einer Störung durch den Messprozess oder aus anderen Gründen. Damit bestätigt Mittelstaedts Analyse den in der Unteilbarkeit der Wellenfunktion verwurzelten holistischen Charakter der Quantenphysik, wie wir ihn in den Kap. 2.92.103.7 und 4.3.4 diskutiert haben. Dies deckt sich auch mit der Zurückweisung lokaler verborgener Parameter. Der d’espagnatsche Begriff einer verschleierten Realität hat mit solchen klassisch geprägten Vorstellungen jedoch nichts gemein und muss deutlich von solchen Ansätzen unterschieden werden, so dass er von allen dem obigen Beispiel ähnlichen Unmöglichkeitsbeweisen völlig unberührt bleibt. Zur Literatur siehe Giuntini (1987) und Mittelstaedt (1990).

  23. 23.

    Dieses „etwas“ ist noch vollkommen unspezifiziert, es könnte die Menge aller Objekte, Atome, Ereignisse, Platonischen Ideen oder auch ein göttliches Prinzip sein.

  24. 24.

    Diesen Begriff hat d’Espagnat bei Pauli entlehnt, demzufolge die Theorie rational sei, die Wirklichkeit aber nicht.

  25. 25.

    Vergleiche d’Espagnat (2006), S. 449 ff. Der wissenschaftstheoretische Gehalt seiner Thesen bleibt jedoch davon unberührt, inwieweit man diesen Folgerungen zuzustimmen bereit ist.

  26. 26.

    Siehe Cramer (1986) sowie den Übersichtssartikel Cramer (1988).

  27. 27.

    Denn dies würde bedeuten, dass Ursachen den Wirkungen vorausgehen. Zwar werden einige Probleme in der Physik, insbesondere in der Quantenfeldtheorie , zeitgespiegelt gerechnet, doch geschieht dies gemäß gewissen Symmetrieprinzipien lediglich aus kalkulatorischen Gründen. Da die Grundgesetze der Physik zeitinvariant sind, lassen sich eben viele Probleme mathematisch einfacher in einer bestimmten Zeitrichtung behandeln, indem man einfach Anfangs- und Endbedingungen vertauscht. Es werden jedoch nirgends reale, zeitlich rückwärts laufende Prozesse angenommen.

  28. 28.

    Roger Penrose etwa, der als grundlegende Theorie der Physik eine zeitasymmetrische Theorie der Quantengravitation postuliert, steht diesen theoretischen Entwicklungen dementsprechend positiv gegenüber. Eine solche Theorie sollte die Singularitäten (also die Unendlichkeiten) in der Allgemeinen Relativitätstheorie eliminieren, den Zusammenbruch der Wellenfunktion erklären und das Rätsel des Zeitpfeils auf grundlegende Gesetzmäßigkeiten zurückführen. Dies sind natürlich hochgesteckte Erwartungen an eine neue Theorie, gleich so viele grundlegende Fragen auf einen Schlag zu lösen. Welche Fragen eine solche Theorie wiederum neu aufwerfen würde, ist natürlich unklar, solange kein ernsthafter Ansatz zu ihr existiert.

  29. 29.

    Pearle (1976), Ghirardi et al. (1986).

  30. 30.

    Ghirardi et al. (1990).

  31. 31.

    Diese Spaltung wurde laut Andrew Cross von Parteiphilosophen gefördert, siehe Cross (1991).

  32. 32.

    Zitiert nach Heisenberg (1956), S. 298.

  33. 33.

    Zitiert nach Heisenberg (1956), S. 299.

  34. 34.

    Dies folgt aus den Überlegungen in Kap. 2.10

  35. 35.

    Heisenberg (1956), S. 299 f.

  36. 36.

    Auf die beschämende Rolle der Vertreter der „Deutschen Physik“ in der Weimarer Republik und dann vor allem im Dritten Reich, an der sich der moralische und intellektuelle Bankrott einiger weniger, aber durchaus bedeutender Naturwissenschaftler offenbarte, können wir an dieser Stelle nicht näher eingehen. Sie kann in diesem Kontext aber auch nicht gänzlich unerwähnt bleiben. Die Vertreter der „Deutschen Physik“ lehnten die Relativitätstheorie und Quantentheorie, an deren Entwicklung jüdische Wissenschaftler entscheidenden Anteil hatten, als zu unanschaulich ab und versuchten stattdessen die eigentlich verworfene Äthertheorie wiederzubeleben. Wie sehr diese durch rassistische Vorurteile geprägte Weltsicht schon aus rein wissenschaftlichen Gründen zum Scheitern verurteilt war, wird daran ersichtlich, dass bei der „Münchner Religionsgespräch“ genannten Aussprache zwischen Vertretern der „Deutschen Physik“ und der modernen Physik sich die Ersteren zur Aufgabe ihrer Position gezwungen sahen – und zwar im im November 1940!

  37. 37.

    Hiermit ist natürlich der indeterministische Charakter der Quantenphänomene gemeint.

  38. 38.

    Kammari und Konstantinow (1952), S. 69.

  39. 39.

    Ebenda, S. 73. Die Bezugnahme auf den „Idealismus in der Chemie“ ist eigentlich ein direkter Angriff auf die neuen Sichtweisen in der Quantenphysik, denn diese beschreibt das Verhalten der Elektronen in der Atomhülle, an der sich alle chemischen Reaktionen abspielen.

  40. 40.

    Scheibe (1974).

  41. 41.

    Einen Überblick über modale Interpretationen liefern Dieks und Vermaas (1998). Eine explizit empiristisch-modale Sichtweise der Quantenphysik vertritt van Fraassen (1991). Eine wahrscheinlichkeitstheoretisch grundierte Interpretation der Quantenphysik, in der ähnlich wie in der Kopenhagener Tradition makroskopische Agenten unverzichtbare Bestandteile sind, findet sich bei Fuchs und Schack (2011).

  42. 42.

    Diese Diskussion bezieht sich auf die Darstellung in Primas (1983).

  43. 43.

    Natürlich macht diese Sichtweise nicht in allen philosophischen Weltbildern Sinn, in diesem aber durchaus. So bezieht sich etwa die klassisch-physikalische Sichtweise auf die makroskopische Abstraktionsebene, bei der Korrelationen zwischen Körpern keinen Einfluss mehr besitzen, während auf der Quantenebene diese Korrelationen fundamental sein können. Die Chemie beispielsweise steht zwischen diesen Extremen und benutzt sowohl klassische als auch quantentheoretische Modelle, wobei das Verhältnis zwischen beiden dem Problem angepasst sein muss und sich nicht immer a priori bestimmen lässt.

  44. 44.

    Mainzer (1990).

  45. 45.

    Primas (1983), S. 293.

  46. 46.

    Ebenda, S. 325.

  47. 47.

    Die folgende Darstellung beruht auf Zeilinger (2003), insbesondere S. 207 ff., sowie auf Zeilinger (1999). Eine Kritik an diesem Ansatz und seinem Informationsbegriff findet sich bei Timpson (2003).

  48. 48.

    Zeilinger (2003), S. 216.

  49. 49.

    Ebenda, S. 229. Zur Bedeutung des Informationsbegriffs vergleiche auch Kap. 2.6.4, 2.10 und 3.7.

  50. 50.

    Ebenda, S. 231.

  51. 51.

    Ludwig (196719851987).

  52. 52.

    Siehe auch seine kurze Übersichtsarbeit in Ludwig (1990).

Literatur

  • Aharonov, Y. und D. Bohm (1959): Significance of Electromagnetic Potentials in the Quantum Theory. Phys. Rev. 115, S. 485–491.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Arndt, M., O. Nairz, J. Vos-Andreae, C. Keller, G. van der Zouw und A. Zeilinger (1999): Wave-particle duality of C60 molecules. Nature 401 (6754), S. 680–682.

    Article  ADS  Google Scholar 

  • Aspect, A., J. Dalibard und G. Roger (1982a): Experimental Test of Bell’s Inequalities Using Time-Varying Analyzers. Phys. Rev. Lett., 49: S. 1804–1807.

    Article  ADS  MathSciNet  Google Scholar 

  • Aspect, A., P. Grangier und G. Roger (1982b): Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities. Phys. Rev. Lett., 49: S. 91–94.

    Article  ADS  Google Scholar 

  • Atmanspacher, H., H. Primas und E. Wertenschlag-Birkhäuser (1995): Der Pauli-Jung-Dialog und seine Bedeutung für die moderne Wissenschaft. Springer, Berlin.

    Book  MATH  Google Scholar 

  • Audretsch, J. (1994): Die Unvermeidbarkeit der Quantenmechanik. In: Mainzer, K. und W. Schirmacher (Hg.), Quanten, Chaos und Dämonen. Erkenntnistheoretische Aspekte der modernen Physik. BI-Wissenschafts-Verlag, Mannheim.

    Google Scholar 

  • Barreto Lemos, G., V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz und A. Zeilinger (2014): Quantum imaging with undetected photons. Nature 512, S. 409–412.

    Article  ADS  Google Scholar 

  • Bauer, T. (2011): Die Kultur der Ambiguität. Eine andere Geschichte des Islams. Insel Verlag, Berlin.

    Google Scholar 

  • Baumann, K. und R. U. Sexl (1984): Die Deutungen der Quantentheorie. Vieweg, Braunschweig.

    Book  Google Scholar 

  • Bell, J. S. (1964): On the Einstein-Podolsky-Rosen paradox. Physics 1, S. 195–200.

    Google Scholar 

  • Bell, J. S. (1966): On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, S. 447–452.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bell, J. S. (1982): On the impossible pilot wave. Found. Phys. 12, S. 989–999.

    Article  ADS  MathSciNet  Google Scholar 

  • Bell, J. S. (1987): Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Bell, J. S. (1990): Against „Measurement“. In: Miller, A. I. (Hg.), Sixty-two Years of Uncertainty. Plenum, New York.

    Google Scholar 

  • Berna, F., P. Goldberg, L. K. Horwitz, J. Brink, S. Holt, M. Bamford und M. Chazan (2012): Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa. PNAS, 109 (20) E1215.

    Article  ADS  Google Scholar 

  • von Bertalanffy, L. (1955): An essay on the relativity of categories. Philosophy of Science 22, S. 243–263.

    Article  Google Scholar 

  • Bieri, P. (Hg.) (1993): Analytische Philosophie des Geistes. Athenäum, Bodenheim.

    Google Scholar 

  • Bitbol, M. (1998): Some steps towards a transcendental deduction of quantum mechanics. Philosophia Naturalis 35, S. 253–280.

    MathSciNet  Google Scholar 

  • Bitbol, M. (2008): Reflective Metaphysics: Understanding Quantum Mechanics from a Kantian Standpoint. Philosophica 83, S. 53–83.

    Google Scholar 

  • Bjorken, J. D. und S. D. Drell (1993): Relativistische Quantenfeldtheorie. BI-Wissenschafts-Verlag, Mannheim.

    MATH  Google Scholar 

  • Bohm, D. (1951): Quantum Theory. Prentice-Hall, Englewood Cliffs.

    Google Scholar 

  • Bohm, D. (1952a): A Suggested Interpretation of the Quantum Theory in Terms of „Hidden“ Variables. (Part I). Phys. Rev. 85, S. 166–179.

    Article  ADS  MATH  Google Scholar 

  • Bohm, D. (1952b): A Suggested Interpretation of the Quantum Theory in Terms of „Hidden“ Variables. (Part II). Phys. Rev. 85, S. 180–193.

    Article  ADS  MATH  Google Scholar 

  • Bohm, D. und B. Hiley (1993): The Undivided Universe: an Ontological Interpretation of Quantum Mechanics. Routledge and Kegan Paul, London.

    Google Scholar 

  • Bohr, N. (1913): On the Constitution of Atoms and Molecules. Part I-III. Philosophical Magazine 26.

    Google Scholar 

  • Bohr, N. (1931): Atomtheorie und Naturbeschreibung. Vier Aufsätze mit einer einleitenden Übersicht. Springer, Berlin.

    MATH  Google Scholar 

  • Bohr, N. (1934): Atomic Theory and the Description of Nature. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Bohr, N. (1935): Can Quantum-Mechanical Description of Reality be Considered Complete? Phys. Rev. 48, S. 696–702.

    Article  ADS  MATH  Google Scholar 

  • Bohr, N. (1948): On the Notions of Causality and Complementarity. Dialectica 2, S. 312–319.

    Article  MATH  Google Scholar 

  • Bohr, N. (1959): Über die Erkenntnisfragen der Quantenphysik. In: Kockel, B., W. Macke und A. Papapetrou (Hg.), Max-Planck-Festschrift 1958, S. 169–175. VEB Verlag der Wissenschaften, Berlin.

    Google Scholar 

  • Bohr, N. (1987): Essays 1958-1962 on Atomic Physics and Human Knowledge. Ox Bow Press, Woodbridge.

    MATH  Google Scholar 

  • du Bois-Reymond, E. (1974): Vorträge über Philosophie und Gesellschaft. Meiner, Hamburg.

    Google Scholar 

  • Boltzmann, L. (1905): Populäre Schriften. Barth, Leipzig.

    MATH  Google Scholar 

  • Bopp, F. (Hg.) (1961): Werner Heisenberg und die Physik unserer Zeit. F. Vieweg und Sohn, Braunschweig.

    MATH  Google Scholar 

  • Born, M., W. Heisenberg und P. Jordan (1926): Zur Quantenmechanik II. Zeitschrift für Physik 35, S. 557–615.

    Article  ADS  MATH  Google Scholar 

  • Born, M. und P. Jordan (1925): Zur Quantenmechanik. Zeitschrift für Physik 34, S. 858–888.

    Article  ADS  Google Scholar 

  • Bradie, M. (1986): Assessing Evolutionary Epistemology. Biology & Philosophy 1, S. 401–459.

    Article  Google Scholar 

  • Brentano, F. (1874): Psychologie vom empirischen Standpunkt. Duncker & Humblot, Leipzig.

    Google Scholar 

  • Bridgman, P. W. (1936): The Nature of Physical Theory. Dover, New York.

    Google Scholar 

  • de Broglie, L.-V. (1924): Recherches sur la théorie des quanta. University of Paris.

    MATH  Google Scholar 

  • de Broglie, L.-V. (1927): La Mécanique ondulatoire et la structure atomique de la matière et du rayonnement. Journal de Physique (Série VI) 8, Nr. 5, S. 225–241.

    MATH  Google Scholar 

  • Bruder, C. E., A. Piotrowski, A. A. Gijsbers, R. Andersson, S. Erickson, T. Diaz de Ståhl, U. Menzel, J. Sandgren, D. von Tell, A. Poplawski, M. Crowley, C. Crasto, E. C. Partridge, H. Tiwari, D. B. Allison, J. Komorowski, G.-J. B. van Ommen, D. I. Boomsma, N. L. Pedersen, J. T. den Dunnen, K. Wirdefeldt und J. P. Dumanski (2008): Phenotypically Concordant and Discordant Monozygotic Twins Display Different DNA Copy-Number-Variation Profiles. American Jour. of Human Genetics, Vol. 82 (3), S. 763–771.

    Article  Google Scholar 

  • Bunge, M. und M. Mahner (2004): Über die Natur der Dinge. Materialismus und Wissenschaft. Hirzel, Stuttgart.

    Google Scholar 

  • Busch, W. (1874): Kritik des Herzens. Friedrich Bassermann, Heidelberg.

    Google Scholar 

  • Calaprice, A. (1996): Einstein sagt: Zitate, Einfälle, Gedanken. Piper, München.

    Google Scholar 

  • Callaway, E. (2015): Oldest stone tools raise questions about their creators. Nature 520, S. 421.

    Article  ADS  Google Scholar 

  • Campbell, D. T. (1974a): Downward causation in hierarchically organised biological systems. In: Ayala, F. J. und T. Dobzhansky (Hg.), Studies in the philosophy of biology: Reduction and related problems, S. 179–186. Macmillan, London.

    Google Scholar 

  • Campbell, D. T. (1974b): Evolutionary epistemology. In: Schilpp, P. A. (Hg.), The Philosophy of Karl R. Popper, S. 412–463. Open Court, La Salle.

    Google Scholar 

  • Carrier, M. (1993): Die Vielfalt der Wissenschaften oder warum die Psychologie kein Zweig der Physik ist. In: Elepfandt, A. und G. Wolters (Hg.), Denkmaschinen: Interdisziplinäre Perspektiven zum Thema Gehirn und Geist, S. 99–115. Universitätsverlag, Konstanz.

    Google Scholar 

  • Casimir, H. (1948): On the attraction between two perfectly conducting plates. Proc. Kon. Nederland. Akad. Wetensch. B51, S. 793.

    MATH  Google Scholar 

  • Chalmers, D. (1995): Facing Up to the Problem of Consciousness. Jour. of Consciousness Studies 2 (3), S. 200–219.

    MathSciNet  Google Scholar 

  • Changeux, J.-P. (1984): Der neuronale Mensch. Wie die Seele funktioniert – die Entdeckungen der neuen Gehirnforschung. Rowohlt, Reinbek.

    Google Scholar 

  • Chomsky, N. (1980): Rules and Representations. Columbia University Press, New York.

    Google Scholar 

  • Chomsky, N. (1995): The Minimalist Program. MIT Press, Cambridge, MA.

    MATH  Google Scholar 

  • Coveney, P. und R. Highfield (1994): Anti-Chaos. Der Pfeil der Zeit in der Selbstorganisation des Lebens. Rowohlt, Reinbeck.

    Google Scholar 

  • Cramer, J. (1986): The Transactional Interpretation of Quantum Mechanics. Modern Physics 58, S. 647–688.

    Article  MathSciNet  Google Scholar 

  • Cramer, J. (1988): An Overview of the Transactional Interpretation of Quantum Mechanics. Int. J. Theor. Phys. 27, S. 227–236.

    Article  MathSciNet  Google Scholar 

  • Cross, A. (1991): The Crisis in Physics: Dialectical Materialism and Quantum Theory. Social Studies of Science 21, S. 735–759.

    Article  Google Scholar 

  • Cubitt, T. S., D. Perez-Garcia und M. M. Wolf (2015): Undecidability of the spectral gap. Nature 528, S. 207–211.

    Article  ADS  Google Scholar 

  • Cushing, J. T. (1993): Bohm’s Theory: Common Sense Dismissed. Stud. Hist. Phil. Sci. 24 (5), S. 815–842.

    Article  MathSciNet  MATH  Google Scholar 

  • Darwin, C. (1859): On the origin of species by means of natural selection or the preservation of favoured races in the struggle for life. John Murray, London.

    Book  Google Scholar 

  • Davidovic, M. und A. Sanz (2013): How does light move? Determining the flow of light without destroying interference. Europhysics News 44, S. 33–36.

    Article  ADS  Google Scholar 

  • Davidson, D. (1980): Essays on Actions and Events. Oxford University Press, Oxford.

    Google Scholar 

  • Davidson, D. (2001): Subjective, Intersubjective, Objective. Oxford University Press, Oxford.

    Book  Google Scholar 

  • Dehaene, S. (1997): The number sense: How the mind creates mathematics. Oxford University Press, New York.

    MATH  Google Scholar 

  • Dennett, D. (1987): The Intentional Stance. Bradford Books/MIT Press, Cambridge, MA.

    Google Scholar 

  • Dennett, D. (1991): Consciousness Explained. Little Brown and Co., Boston.

    Google Scholar 

  • Dettmann, U. (1999): Der radikale Konstruktivismus: Anspruch und Wirklichkeit einer Theorie. Mohr Siebeck, Tübingen.

    Google Scholar 

  • DeWitt, B. und R. N. Graham (Hg.) (1973): The Many-Worlds Interpretation of Quantum Mechanics. Princeton University Press, Princeton.

    Google Scholar 

  • Diamond, J. (2000): Der dritte Schimpanse. Fischer, Frankfurt/Main.

    Google Scholar 

  • Dieks, D. und P. E. Vermaas (Hg.) (1998): The Modal Interpretation of Quantum Mechanics. The Western Ontario Series in Philosophy of Science, Vol. 60. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Diettrich, O. (1991): Induction and evolution of cognition and science. In: van de Vijver, G. (Hg.), Teleology and Selforganisation. Philosophica 47/II, S. 81–109.

    Google Scholar 

  • Diettrich, O. (1996): Das Weltbild der modernen Physik im Lichte der Konstruktivistischen Evolutionären Erkenntnistheorie. In: Riedl, R. und M. Delpos (Hg.), Die Evolutionäre Erkenntnistheorie im Spiegel der Wissenschaften. WUV-Universitätsverlag, Wien.

    Google Scholar 

  • Dirac, P. A. M. (1928): The Quantum Theory of the Electron. Proc. Roy. Soc. London A117, S. 610–624.

    Article  ADS  MATH  Google Scholar 

  • Dirac, P. A. M. (1982): Pretty mathematics. Int. J. Theor. Phys. 21, S. 603–605.

    Article  MathSciNet  Google Scholar 

  • Drieschner, M. (2002): Moderne Naturphilosophie. Eine Einführung. Mentis, Paderborn.

    Google Scholar 

  • Dupré, J. (1995): The Disorder of Things: Metaphysical Foundations of the Disunity of Science. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Dürr, D., S. Goldstein, R. Tumulka und N. Zanghì (2004): Bohmian Mechanics and Quantum Field Theory. Phys. Rev. Lett. 93, 090402.

    Article  MathSciNet  Google Scholar 

  • Dürr, D., S. Goldstein und N. Zanghì (1992): Quantum equilibrium and the origin of absolute uncertainty. Jour. Stat. Phys. 67, S. 843–907.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Dürr, D.(1995): Quantum Physics Without Quantum Philosophy. Stud. Hist. Phil. Mod. Phys. Part B 26, S. 137–149.

    Google Scholar 

  • Dürr, D., R. Tumulka und N. Zanghì (2005): Bell-Type Quantum Field Theories. Jour. Phys. A: Math. Gen. 38, R1-R43.

    MathSciNet  MATH  Google Scholar 

  • Dyson, F. (1956): Obituary of Hermann Weyl. Nature, S. 457–458.

    Google Scholar 

  • Eidemüller, D. (2014): Bilder mit verlorenem Licht. Spektrum der Wissenschaft (November), S. 20–22.

    Google Scholar 

  • Eigen, M. (1971): Molekulare Selbstorganisation und Evolution (Self organization of matter and the evolution of biological macro molecules). Naturwissenschaften Bd. 58 (10), S. 465–523.

    Article  ADS  Google Scholar 

  • Eigen, M. und P. Schuster (1979): The Hypercycle – A Principle of Natural Self Organization. Springer, Berlin.

    Google Scholar 

  • Eigen, M. und R. Winkler (1976): Das Spiel – Naturgesetze steuern den Zufall. Piper, München.

    Google Scholar 

  • Einstein, A. (1905a): Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik 17, S. 132–148.

    Article  ADS  MATH  Google Scholar 

  • Einstein, A. (1905b): Zur Elektrodynamik bewegter Körper. Annalen der Physik 17, S. 891–921.

    Article  ADS  Google Scholar 

  • Einstein, A. (1984): Aus meinen späten Jahren. Ullstein, Frankfurt/Main.

    Google Scholar 

  • Einstein, A. und M. Born (1969): Briefwechsel. Rowohlt, Reinbek.

    MATH  Google Scholar 

  • Einstein, A. und L. Infeld (1956): Die Evolution der Physik. Rowohlt, Reinbek.

    Google Scholar 

  • Einstein, A., B. Podolski und N. Rosen (1935): Can Quantum-Mechanical Description of Physical Reality be Considered Complete? Phys. Rev. 47, S. 777–780.

    Article  ADS  MATH  Google Scholar 

  • Elepfandt, A. und G. Wolters (Hg.) (1993): Denkmaschinen: Interdisziplinäre Perspektiven zum Thema Gehirn und Geist. Universitätsverlag, Konstanz.

    Google Scholar 

  • Engels, E.-M. (1989): Erkenntnis als Anpassung? Eine Studie zur Evolutionären Erkenntnistheorie. Suhrkamp, Frankfurt/Main.

    Google Scholar 

  • Esfeld, M. (2012): Philosophie der Physik. Suhrkamp, Berlin.

    Google Scholar 

  • d’Espagnat, B. (1971): The Conceptual Foundations of Quantum Mechanics. Addison-Wesley, Reading.

    Google Scholar 

  • d’Espagnat, B. (1983): Auf der Suche nach dem Wirklichen. Springer, Heidelberg.

    Book  Google Scholar 

  • d’Espagnat, B. (1989): Nonseparability and the tentative descriptions of reality. In: Schommers, W. (Hg.), Quantum Theory and Pictures of Reality, S. 89–168. Springer, Berlin.

    Google Scholar 

  • d’Espagnat, B. (1995): Veiled Reality. Addison-Wesley, Reading.

    MATH  Google Scholar 

  • d’Espagnat, B. (2006): On Physics and Philosophy. Princeton University Press, Princeton.

    Google Scholar 

  • Everett, H. (1957): Relative State Formulation of Quantum Mechanics. Rev. of Mod. Phys. 29, S. 454–462.

    Article  ADS  MathSciNet  Google Scholar 

  • Everett, H. (1973): The Theory of the universal Wave Function. In: DeWitt, B. und R. N. Graham (Hg.), The Many-Worlds Interpretation of Quantum Mechanics. Princeton University Press, Princeton.

    Google Scholar 

  • Fahr, H. J. (1989): The modern concept of vacuum and its relevance for the cosmological models of the universe. In: Weingartner, P. und G. Schurz (Hg.), Philosophie der Naturwissenschaften. Akten des 13. Intern. Wittgenstein Symposiums. Hölder-Pichler-Tempsky, Wien.

    Google Scholar 

  • Falkenburg, B. (2007): Particle Metaphysics: A Critical Account of Subatomic Reality. Springer, Heidelberg.

    Google Scholar 

  • Favrholdt, D. (Hg.) (2008): Niels Bohr Collected Works. Volume 10: Complementarity Beyond Physics (1928-1962). Elsevier, Amsterdam.

    Google Scholar 

  • Feynman, R. P. (1965): The Character of physical law. MIT Press, Cambridge, MA.

    Google Scholar 

  • Fischer, E. P. (2000): An den Grenzen des Denkens: Wolfgang Pauli – ein Nobelpreisträger über die Nachtseiten der Wissenschaft. Herder, Freiburg.

    Google Scholar 

  • Fock, W. (1952): Kritik der Anschauungen Bohrs über die Quantenmechanik. Sowjetwissensch., Naturwiss. Abt. 5, S. 123–132.

    Google Scholar 

  • Fock, W. (1959): Über die Deutung der Quantenmechanik. In: Kockel, B., W. Macke und A. Papapetrou (Hg.), Max-Planck-Festschrift 1958, S. 177–195. VEB Verlag der Wissenschaften, Berlin.

    Google Scholar 

  • Fodor, J. A. (1974): Special Sciences. Synthese 28, S. 97–115.

    Article  Google Scholar 

  • Forman, P. (1971): Weimar culture, causality and quantum theory, 1918-1927. In: McCormack, R. (Hg.), Historical Studies in the Physical Sciences 3. University of Pennsylvania Press, Philadelphia.

    Google Scholar 

  • van Fraassen, B. (1980): The Scientific Image. Oxford University Press, Oxford.

    Book  Google Scholar 

  • van Fraassen, B. (1991): Quantum Mechanics: An Empiricist View. Oxford University Press, Oxford.

    Book  Google Scholar 

  • van Fraassen, B. (2002): The Empirical Stance. Yale University Press, Oxford.

    Google Scholar 

  • Freedman, S. J. und J. Clauser (1972): Experimental test of local hidden variable theories. Physical Review Letters, 28: S. 938.

    Article  ADS  Google Scholar 

  • Freud, S. (1927): Die Zukunft einer Illusion. Internationaler Psychoanalytischer Verlag, Wien.

    Google Scholar 

  • Friederich, S. (2013): In defence of non-ontic accounts of quantum states. Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Mod. Phys. 44, S. 77–92.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Friedrich, B. und D. Herschbach (2003): Stern and Gerlach: How a Bad Cigar Helped Reorient Atomic Physics. Physics Today 56, S. 53–59.

    Article  ADS  Google Scholar 

  • Fuchs, C. A. und R. Schack (2011): A Quantum-Bayesian route to quantum-state space. Foundations of Physics 41 (3), S. 345–356.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Gabrielse, G., D. Hanneke, T. Kinoshita, M. Nio und B. Odom (2006): New Determination of the Fine Structure Constant from the Electron g Value and QED. Phys. Rev. Lett. 97, 030802.

    Article  ADS  Google Scholar 

  • Gamow, G. (1966): The Thirty Years that Shook Physics. Dover, New York.

    Google Scholar 

  • Gardner, H. (1985): The mind’s new science: A history of the cognitive revolution. Basic Books, New York.

    Google Scholar 

  • Gehlen, A. (1977): Urmensch und Spätkultur. Athenaion, Frankfurt/Main.

    Google Scholar 

  • Gell-Mann, M. und J. Hartle (1990): Quantum Mechanics in the Light of Quantum Cosmology. In: Zurek, W. (Hg.), Complexity, Entropy, and the Physics of Information. Addison-Wesley, Reading.

    Google Scholar 

  • Gell-Mann, M. und J.(1993): Classical Equations for Quantum Systems. Phys. Rev. D47, S. 3345–3382.

    Google Scholar 

  • Gerlich, S., S. Eibenberger, M. Tomandl, S. Nimmrichter, K. Hornberger, P. Fagan, J. Tuxen, M. Mayor und M. Arndt (2011): Quantum interference of large organic molecules. Nat. Commun., 2: S. 263.

    Article  ADS  Google Scholar 

  • Ghirardi, G. C., R. Grassi und P. Pearle (1990): Relativistic dynamical reduction models: general framework and examples. Found. Phys. 20, S. 1271–1316.

    Article  ADS  MathSciNet  Google Scholar 

  • Ghirardi, G. C., A. Rimini und T. Weber (1986): Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D34, S. 470–491.

    ADS  MathSciNet  MATH  Google Scholar 

  • Ghiselin, M. T. (1973): Darwin and evolutionary psychology. Science 179, S. 964–968.

    Article  ADS  Google Scholar 

  • Giulini, D., E. Joos, C. Kiefer, J. Kupsch, I.-O. Stamatescu und H. D. Zeh (1996): Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Heidelberg.

    Book  MATH  Google Scholar 

  • Giuntini, R. (1987): Quantum Logics and Lindenbaum Property. Studia Logica 46, S. 17–35.

    Article  MathSciNet  MATH  Google Scholar 

  • von Glasersfeld, E. (1996): Der Radikale Konstruktivismus. Ideen, Ergebnisse, Probleme. Suhrkamp, Frankfurt/Main.

    Google Scholar 

  • Gollihar, J., M. Levy und A. D. Ellington (2014): Many Paths to the Origin of Life. Science 343, S. 259–260.

    Article  ADS  Google Scholar 

  • Greenberger, D., M. Horne, A. Shimony und A. Zeilinger (1990): Bell’s theorem without inequalities. American Journal of Physics, 58: S. 1131–1143.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Griffiths, R. B. (2011): EPR, Bell, and quantum locality. American Journal of Physics, 79: S. 954.

    Article  ADS  Google Scholar 

  • Groß, M. (2014): Proteine aus der Urzeit des Lebens. Nachrichten aus der Chemie 62 (6), S. 632–634.

    Article  Google Scholar 

  • Gumin, H. und H. Meier (Hg.) (1997): Einführung in den Konstruktivismus. Piper, München.

    Google Scholar 

  • Habermas, J. (1968): Erkenntnis und Interesse. Suhrkamp, Frankfurt/Main.

    Google Scholar 

  • Hacking, I. (1983): Representing and Intervening. Introductory Topics in the Philosophy of Natural Science. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Hartmann, N. (1950): Philosophie der Natur. Abriß der speziellen Kategorienlehre. De Gruyter, Berlin.

    Book  Google Scholar 

  • Hartmann, N. (1964): Der Aufbau der realen Welt. De Gruyter, Berlin.

    Book  Google Scholar 

  • Hartmann, N. (1982): Die Erkenntnis im Lichte der Ontologie. Meiner, Hamburg.

    Google Scholar 

  • Hawking, S. (1988): Eine kurze Geschichte der Zeit. Rowohlt, Reinbek.

    Google Scholar 

  • Heilbron, J. L. (2013): History: The path to the quantum atom. Nature 498, S. 27–30.

    Article  ADS  MATH  Google Scholar 

  • Heisenberg, W. (1925): Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift für Physik, 33: S. 879–893.

    Article  ADS  Google Scholar 

  • Heisenberg, W. (1927): Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik, 43: S. 172–198.

    Article  ADS  Google Scholar 

  • Heisenberg, W. (1929): Die Entwicklung der Quantentheorie 1918-1928. Die Naturwissenschaften 17, S. 490–497.

    Article  ADS  MATH  Google Scholar 

  • Heisenberg, W. (1956): Die Entwicklung der Deutung der Quantentheorie. Phys. Blätter 12, S. 289–304.

    Article  Google Scholar 

  • Heisenberg, W. (1958): Die physikalischen Prinzipien der Quantentheorie. BI-Wissenschafts-Verlag, Mannheim.

    MATH  Google Scholar 

  • Heisenberg, W. (1959): Wandlungen in den Grundlagen der Naturwissenschaft. Hirzel, Stuttgart.

    MATH  Google Scholar 

  • Heisenberg, W. (1966): Das Naturbild der heutigen Physik. Rowohlt, Reinbek.

    Google Scholar 

  • Heisenberg, W. (1969): Der Teil und das Ganze. Piper, München.

    Google Scholar 

  • Heisenberg, W. (1973): Physik und Philosophie. Ullstein, Frankfurt/Main.

    Google Scholar 

  • Heisenberg, W. (1985): Was ist ein Elementarteilchen? Aus: Werner Heisenberg. Gesammelte Werke. Abteilung C III. Piper, München.

    Google Scholar 

  • Heisenberg, W. (1989): Ordnung der Wirklichkeit. Piper, München.

    Google Scholar 

  • Hentschel, K. (1990): Interpretationen und Fehlinterpretationen der speziellen und der allgemeinen Relativitätstheorie durch Zeitgenossen Albert Einsteins. Birkhäuser, Basel.

    Google Scholar 

  • Herbert, N. (1987): Quantenrealität. Birkhäuser, Basel.

    Book  Google Scholar 

  • Hofstadter, D. R. (1979): Gödel, Escher, Bach. An Eternal Golden Braid. Basic Books, New York.

    MATH  Google Scholar 

  • Hunger, E. (1964): Von Demokrit bis Heisenberg. Quellen und Betrachtungen zur naturwissenschaftlichen Erkenntnis. Vieweg, Braunschweig.

    Google Scholar 

  • Irrgang, B. (1993): Lehrbuch der Evolutionären Erkenntnistheorie. Evolution, Selbstorganisation, Kognition. Ernst Reinhard, München.

    Google Scholar 

  • Jablonka, E. und M. J. Lamb (2002): The Changing Concept of Epigenetics. Annals of the New York Academy of Sciences 981, S. 82–96.

    Article  ADS  Google Scholar 

  • Jackson, F. (1982): Epiphenomenal Qualia. Philosophical Quarterly 32, S. 127–136.

    Article  Google Scholar 

  • Jackson, F. (1986): What Mary Didn’t Know. Jour. of Philosophy 83, S. 291–295.

    Article  Google Scholar 

  • Jacques, V., E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect und J.-F. Roch (2007): Experimental Realization of Wheeler’s Delayed-Choice Gedanken Experiment. Science 315, S. 966–968.

    Article  ADS  MATH  Google Scholar 

  • Jammer, M. (1961): Concepts of Mass in Classical and Modern Physics. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Jammer, M. (1973): The Conceptual Development of Quantum Mechanics. McGraw-Hill, New York.

    Google Scholar 

  • Jammer, M. (1974): The Philosophy of Quantum Mechanics. Wiley, New York.

    Google Scholar 

  • Jammer, M. (1993): Concepts of Space. Dover, New York, 3. Aufl.

    Google Scholar 

  • Jaspers, K. (1957): Die großen Philosophen. Piper, München.

    Google Scholar 

  • Junker, T. (2013): Die Evolution der Phantasie. Wie der Mensch zum Künstler wurde. S. Hirzel, Stuttgart.

    Google Scholar 

  • Kamlah, W. (1972): Philosophische Anthropologie. BI-Wissenschafts-Verlag, Zürich.

    Google Scholar 

  • Kammari, M. und F. Konstantinow (1952): Die Stellung und Bedeutung der Wissenschaft in der gesellschaftlichen Entwicklung. Sowjetwiss., Gesellsch. Abt. 1.

    Google Scholar 

  • Kanitscheider, B. (1993): Von der mechanistischen Welt zum kreativen Universum. WBG, Darmstadt.

    Google Scholar 

  • Kennard, E. H. (1927): Zur Quantenmechanik einfacher Bewegungstypen. Zeitschrift für Physik 44, S. 326–352.

    Article  ADS  MATH  Google Scholar 

  • Kim, J. (1995): Supervenience and Mind: Selected Philosophical Essays. University Press, Cambridge.

    Google Scholar 

  • Kim, J. (1998): Mind in a Physical World: An Essay on the Mind-Body Problem and Mental Causation. MIT Press, Cambridge, MA.

    Google Scholar 

  • Kleeberg, B. (2003): Evolutionäre Ästhetik. Naturanschauung und Naturerkenntnis im Monismus Ernst Haeckels. In: Lachmann, R. und S. Rieger (Hg.), Text und Wissen: Technologische und anthropologische Aspekte. Gunter Narr, Tübingen.

    Google Scholar 

  • Knecht, T. (2005): Erfunden oder wiedergefunden? – Zum aktuellen Stand der ‚Recovered Memory‘-Debatte. Schweizerisches Medizin-Forum 5 (43), S. 1083–1087.

    Google Scholar 

  • Kochen, S. und E. Specker (1967): The Problem of Hidden Variables in Quantum Mechanics. Jour. of Mathematics and Mechanics 17, S. 59–87.

    MathSciNet  MATH  Google Scholar 

  • Kocsis, S., B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm und A. M. Steinberg (2011): Observing the Average Trajectories of Single Photons in a Two-Slit Interferometer. Science 332, S. 1170–1173.

    Article  ADS  Google Scholar 

  • Koffka, K. (1935): Principles of Gestalt Psychology. Harcourt-Brace, New York.

    Google Scholar 

  • Köhler, H. (1952): Die Wirkung des Judentums auf das abendländische Geistesleben. Duncker & Humblot, Berlin.

    Google Scholar 

  • Kripke, S. A. (1971): Identity and Necessity. In: Munitz, M. K. (Hg.), Identity and Individuation, S. 135–164. New York University Press, New York.

    Google Scholar 

  • Kripke, S. A. (1980): Naming and Necessity. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Kuhn, T. (1962): The Structure of Scientific Revolutions. University of Chicago Press, Chicago.

    Google Scholar 

  • Küppers, B.-O. (1986): Der Ursprung biologischer Information. Zur Naturphilosophie der Lebensentstehung. Piper, München.

    Google Scholar 

  • Lederberg, J. (2001): The Meaning of Epigenetics. The Scientist 15 (18), S. 6–9.

    Google Scholar 

  • Lee, T. D. und C. N. Yang (1956): Question of Parity Conservation in Weak Interactions. Phys. Rev. 104, S. 254.

    Article  ADS  Google Scholar 

  • Lévy-Strauss, C. (1968): Das wilde Denken. Suhrkamp, Frankfurt/Main.

    Google Scholar 

  • Lévy-Strauss, C. (1975): Strukturale Anthropologie II. Suhrkamp, Frankfurt/Main.

    Google Scholar 

  • Lewis, C. I. (1929): Mind and the World Order. C. Scribner’s Sons, New York.

    Google Scholar 

  • Lindner, F., M. G. Schätzel, H. Walther, A. Baltuška, E. Goulielmakis, F. Krausz, D. B. Miloševic, D. Bauer, W. Becker und G. G. Paulus (2005): Attosecond Double-Slit Experiment. Phys. Rev. Lett., 95, 040401.

    Article  ADS  Google Scholar 

  • Lorenz, K. (1941): Kants Lehre vom Apriorischen im Lichte gegenwärtiger Biologie. Blätter für Deutsche Philosophie 15, S. 94–125.

    Google Scholar 

  • Lorenz, K. (1988): Hier bin ich - wo bist du? Ethologie der Graugans. Piper, München.

    Google Scholar 

  • Lorenz, K. (1997): Die Rückseite des Spiegels. Versuch einer Naturgeschichte menschlichen Erkennens. Piper, München.

    Google Scholar 

  • Lorenz, K. und F. Wuketits (Hg.) (1983): Die Evolution des Denkens. Piper, München.

    Google Scholar 

  • Ludwig, G. (1967): An axiomatic foundation of quantum mechanics on a nonsubjective basis. In: Bunge, M. (Hg.), Quantum Theory and Reality, S. 98–104. Springer, Berlin.

    Google Scholar 

  • Ludwig, G. (1985): An Axiomatic Basis for Quantum Mechanics; Band 1: „Derivation of Hilbert Space Structure“. Springer, Berlin.

    Book  MATH  Google Scholar 

  • Ludwig, G. (1987): An Axiomatic Basis for Quantum Mechanics; Band 2: „Quantum Mechanics and Macrosystems“. Springer, Berlin.

    Book  MATH  Google Scholar 

  • Ludwig, G. (1990): Die Katze ist tot. In: Audretsch, J. und K. Mainzer (Hg.), Wieviele Leben hat Schrödingers Katze? Zur Physik und Philosophie der Quantenmechanik, S. 183–208. Spektrum, Heidelberg.

    Google Scholar 

  • Lumsden, C. und E. Wilson (1984): Das Feuer des Prometheus. Wie das menschliche Denken entstand. Piper, München.

    Google Scholar 

  • Lütterfelds, W. (Hg.) (1987): Transzendentale oder evolutionäre Erkenntnistheorie? WBG, Darmstadt.

    Google Scholar 

  • Ma, X., S. Zotter, J. Kofler, R. Ursin, T. Jennewein, C. Brukner und A. Zeilinger (2012): Experimental delayed-choice entanglement swapping. Nature Physics 8, S. 479–484.

    ADS  Google Scholar 

  • Mach, E. (1988): Die Mechanik in ihrer Entwicklung. Historisch-kritisch dargestellt. Herausgegeben und mit einem Anhang versehen von Renate Wahsner und Horst-Heino von Borzeszkowski. Akademie-Verlag, Berlin.

    MATH  Google Scholar 

  • Mainzer, K. (1990): Naturphilosophie und Quantenmechanik. In: Audretsch, J. und K. Mainzer (Hg.), Wieviele Leben hat Schrödingers Katze? Zur Physik und Philosophie der Quantenmechanik. Spektrum, Heidelberg.

    Google Scholar 

  • Mainzer, K. und W. Schirmacher (Hg.) (1994): Quanten, Chaos und Dämonen. Erkenntnistheoretische Aspekte der modernen Physik. BI-Wissenschaftsverlag, Mannheim.

    Google Scholar 

  • Mann, T. (1957): Leiden und Größe der Meister. Fischer, Frankfurt/Main.

    Google Scholar 

  • Manning, A. G., R. I. Khakimov, R. G. Dall und A. G. Truscott (2015): Wheeler’s delayed-choice gedanken experiment with a single atom. Nature Physics 11, S. 539–542.

    Article  ADS  Google Scholar 

  • Markowitsch, H. und H. Welzer (2005): Das autobiographische Gedächtnis. Hirnorganische Grundlagen und biosoziale Entwicklung. Klett-Cotta, Stuttgart.

    Google Scholar 

  • Maturana, H. (1998): Biologie der Realität. Suhrkamp, Frankfurt/Main.

    Google Scholar 

  • Maturana, H. und B. Pörksen (2002): Vom Sein zum Tun. Die Ursprünge der Biologie des Erkennens. Carl-Auer Verlag, Heidelberg.

    Google Scholar 

  • Maturana, H. und F. Varela (1987): Der Baum der Erkenntnis. Goldmann, München.

    Google Scholar 

  • Maudlin, T. (1994): Quantum Non-Locality and Relativity: Metaphysical Intimations of Modern Physics. Blackwell, Cambridge, MA.

    Google Scholar 

  • Mausfeld, R. (2003): No Psychology In – No Psychology Out. Psychologische Rundschau 54, S. 185–191.

    Article  Google Scholar 

  • Mayr, E. (1979): Evolution und die Vielfalt des Lebens. Springer, Berlin.

    Book  Google Scholar 

  • Mayr, E. (1984): Die Entwicklung der biologischen Gedankenwelt. Springer, Berlin.

    Book  Google Scholar 

  • Mayr, E. (1988): Toward a new philosophy of biology. The Belknap Press of Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Mermin, N. D. (1985): Is the moon there when nobody looks? Reality and the quantum theory. Physics today (April), S. 38–47.

    Google Scholar 

  • von Meyenn, K. (Hg.) (1983): Quantenmechanik und Weimarer Republik. Facetten der Physik, Band 12. Vieweg, Wiesbaden.

    Google Scholar 

  • Meyer, H. (2000): Traditionelle und evolutionäre Erkenntnistheorie. Georg Olms, Hildesheim.

    Google Scholar 

  • Misra, B. und E. C. G. Sudarshan (1977): The Zeno’s paradox in quantum theory. J. Math. Phys. 18, S. 756–763.

    Article  ADS  MathSciNet  Google Scholar 

  • Mittelstaedt, P. (1990): Objektivität und Realität in der Quantenphysik. In: Audretsch, J. und K. Mainzer (Hg.), Wieviele Leben hat Schrödingers Katze? Zur Physik und Philosophie der Quantenmechanik. Spektrum, Heidelberg.

    Google Scholar 

  • Mulrey, J. (Hg.) (1981): The Nature of Matter. Oxford University Press, Oxford.

    Google Scholar 

  • Murdoch, D. (1987): Niels Bohr’s philosophy of physics. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Mutschler, H.-D. (2014): Halbierte Wirklichkeit. Warum der Materialismus die Welt nicht erklärt. Butzon & Bercker, Kevelaer.

    Google Scholar 

  • Myrvold, W. C. (2002): On peaceful coexistence: is the collapse postulate incompatible with relativity? Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Mod. Phys. 33, S. 435–466.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Nagel, T. (1974): What is it like to be a bat? Philosophical Review Vol. 83 (4), S. 435–451.

    Article  Google Scholar 

  • Nagel, T. (1986): The View From Nowhere. Oxford University Press, New York.

    Google Scholar 

  • Nagel, T. (1992): Der Blick von Nirgendwo. Suhrkamp, Frankfurt/Main.

    Google Scholar 

  • Nagel, T. (1993): Wie ist es, eine Fledermaus zu sein? In: Bieri, P. (Hg.), Analytische Philosophie des Geistes, S. 261–275. Athenäum, Bodenheim.

    Google Scholar 

  • von Neumann, J. (1932): Mathematische Grundlagen der Quantenmechanik. Springer, Berlin.

    MATH  Google Scholar 

  • Nida-Rümelin, J. (2006): Ursachen und Gründe. Replik auf: Michael Pauen, Ursachen und Gründe, in Heft 5/2005. Information Philosophie, Heft 1/2006, S. 32–36.

    Google Scholar 

  • Pan, J.-W., D. Bouwmeester, M. Daniell, H. Weinfurter und A. Zeilinger (2000): Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement. Nature, 403: S. 515–519.

    Article  ADS  MATH  Google Scholar 

  • Pauen, M. (2007): Was ist der Mensch? Die Entdeckung der Natur des Geistes. Deutsche Verlags-Anstalt, München.

    Google Scholar 

  • Pauli, W. (1933): Die allgemeinen Prinzipien der Wellenmechanik. In: Geiger, H. und K. Scheel (Hg.), Handbuch der Physik, Vol. 24. Springer, Berlin.

    Google Scholar 

  • Pauli, W. (1950): Die philosophische Bedeutung der Idee der Komplementarität. Experientia 6, S. 72–75.

    Article  Google Scholar 

  • Pauli, W. (1984): Physik und Erkenntnistheorie. Vieweg und Teubner, Braunschweig.

    Book  MATH  Google Scholar 

  • Pauli, W. (1990): Die allgemeinen Prinzipien der Wellenmechanik (Neuausgabe). Springer, Berlin.

    Book  MATH  Google Scholar 

  • Pauli, W. (1994): Writings on Physics and Philosophy. Springer, Berlin.

    Book  MATH  Google Scholar 

  • Pearle, P. (1976): Reduction of the state vector by a nonlinear Schrödinger equation. Phys. Rev. D13, S. 857–868.

    ADS  MathSciNet  Google Scholar 

  • Peierls, R. (1991): In defence of „Measurement“. Phys. World, S. 19–20.

    Google Scholar 

  • Penrose, R. (1989): The Emperor’s New Mind: Concerning Computers, Minds, and The Laws of Physics. Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Peres, A. (1995): Quantum Theory: Concepts and Methods. Springer, New York.

    MATH  Google Scholar 

  • Pessoa, F. (1925): Poemas Inconjuntos. Athena, Lissabon.

    Google Scholar 

  • Piaget, J. (1996): Die Psychologie des Kindes. Dtv, München.

    Google Scholar 

  • Piaget, J. (2003): Das Erwachen der Intelligenz beim Kinde. Klett-Cotta, Stuttgart.

    Google Scholar 

  • Planck, M. (1900): Über eine Verbesserung der Wienschen Spektralgleichung. Verhandl. Dtsch. phys. Ges. 2, S. 202–204.

    Google Scholar 

  • Planck, M. (1910): Acht Vorlesungen über theoretische Physik, gehalten an der Columbia University in der City of New York im Frühjahr 1909. Hirzel, Leipzig.

    Google Scholar 

  • Planck, M. (1948): Wissenschaftliche Selbstbiographie. Barth, Leipzig.

    MATH  Google Scholar 

  • Plessner, H. (1981): Die Stufen des Organischen und der Mensch. Einleitung in die philosophische Anthropologie. Suhrkamp, Frankfurt/Main.

    Google Scholar 

  • Poincaré, H. (1890): Notice sur Halphen. Journal de l’École Polytechnique, S. 143.

    Google Scholar 

  • Poincaré, H. (1905): The Value of Science. Flammarion, Paris.

    Google Scholar 

  • Poincaré, H. (1906): Der Wert der Wissenschaft. B.G. Teubner, Leipzig.

    MATH  Google Scholar 

  • Polanyi, M. (1967): Life transcending physics and chemistry. Chemical Engineering News 45 (35), S. 54–66.

    Article  Google Scholar 

  • Popper, K. R. (1967): Quantum Mechanics without the Observer. In: Bunge, M. (Hg.), Quantum Theory and Reality, S. 7–44. Springer, Berlin.

    Google Scholar 

  • Popper, K. R. (1973): Objektive Erkenntnis. Ein evolutionärer Entwurf. Hoffmann und Campe, Hamburg.

    Google Scholar 

  • Popper, K. R. (1978): Natural Selection and the Emergence of Mind. Dialectica 32, S. 339–355.

    Article  Google Scholar 

  • Popper, K. R. (1994): Logik der Forschung. Mohr Siebeck, Tübingen.

    MATH  Google Scholar 

  • Popper, K. R. (2001): Die Quantentheorie und das Schisma der Physik. Mohr Siebeck, Tübingen.

    Google Scholar 

  • Primas, H. (1983): Chemistry, Quantum Mechanics and Reductionism. Perspectives in Theoretical Chemistry. Springer, Berlin.

    Google Scholar 

  • Pusey, M. F., J. Barrett und T. Rudolph (2012): On the reality of the quantum state. Nature Physics 8, S. 475–478.

    Article  ADS  Google Scholar 

  • Putnam, H. (1968): Psychological Predicates. In: Captain, W. H. und D. D. Merrill (Hg.), Art, Mind and Religion, S. 37–48. Pittsburgh University Press, Pittsburgh.

    Google Scholar 

  • Quine, W. V. O. (1951): Two Dogmas of Empiricism. The Philosophical Review 60, S. 20–43.

    Article  MATH  Google Scholar 

  • Quine, W. V. O. (1981): Theories and Things. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Radnitzky, G. und W. W. Bartley (Hg.) (1987): Evolutionary Epistemology, Rationality, and the Sociology of Knowledge. Open Court, La Salle.

    Google Scholar 

  • Redhead, M. (1982): Quantum Field Theory for Philosophers. In: Peter D. Asquith, T. N. (Hg.), PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, S. 57–99. University of Michigan.

    Google Scholar 

  • Redhead, M. (1983): Nonlocality and Peaceful Coexistence. In: Swinburn, R. (Hg.), Space, Time and Causality, S. 151–189. Reidel, Dordrecht.

    Google Scholar 

  • Redhead, M. (1987): Incompleteness, Nonlocality, and Realism. Clarendon Press, Oxford.

    MATH  Google Scholar 

  • Reichenbach, H. (1928): Philosophie der Raum-Zeit-Lehre. Gruyter, Berlin.

    Book  MATH  Google Scholar 

  • Reisinger, B., J. Sperl, A. Holinski, V. Schmid, C. Rajendran, L. Carstensen, S. Schlee, S. Blanquart, R. Merkl und R. Sterner (2014): Evidence for the Existence of Elaborate Enzyme Complexes in the Paleoarchean Era. J. Am. Chem. Soc. 136 (1), S. 122–129.

    Article  Google Scholar 

  • Rensch, B. (1977): Arguments for Panpsychistic Identism. In: Cobb, J. B. und D. Griffin (Hg.), Mind and Nature: Essays on the Interface of Science and Philosophy, S. 70–78. University Press of America, Washington, D.C.

    Google Scholar 

  • Rensch, B. (1991): Das universale Weltbild. Evolution und Naturphilosophie. WBG, Darmstadt.

    Google Scholar 

  • Riedl, R. (1975): Die Ordnung des Lebendigen: Systembedingungen der Evolution. Parey, Hamburg.

    Google Scholar 

  • Riedl, R. (1980): Biologie der Erkenntnis – Die stammesgeschichtlichen Grundlagen der Vernunft. Parey, Hamburg.

    Google Scholar 

  • Riedl, R. (1985): Evolution und Erkenntnis. Antworten auf Fragen aus unserer Zeit. Piper, München.

    Google Scholar 

  • Riedl, R. und E. M. Bonet (Hg.) (1987): Entwicklung der Evolutionären Erkenntnistheorie. Wiener Studien zur Wissenschaftstheorie. Band 1. Verlag der Österreichischen Staatsdruckerei, Wien.

    Google Scholar 

  • Riedl, R. und M. Delpos (Hg.) (1996): Die Evolutionäre Erkenntnistheorie im Spiegel der Wissenschaften. WUV-Universitätsverlag, Wien.

    Google Scholar 

  • Riedl, R. und F. M. Wuketits (Hg.) (1987): Die Evolutionäre Erkenntnistheorie: Bedingungen, Lösungen, Kontroversen. Paul Parey, Berlin.

    Google Scholar 

  • Röseberg, U. (Hg.) (1987): Niels Bohr. Leben und Werk eines Atomphysikers 1885-1962. Akademie Verlag, Berlin.

    Google Scholar 

  • Ruse, M. (1990): Does Evolutionary Epistemology imply Realism? In: Rescher, N. (Hg.), Evolution, Cognition and Realism. Studies in Evolutionary Epistemology, S. 101–110. University Press of America, Lanham, MD.

    Google Scholar 

  • Russell, B. (Hg.) (1919): The Study of Mathematics. Mysticism and Logic and Other Essays. Longman, London.

    Google Scholar 

  • Russell, B. (1950): Philosophie des Abendlandes. Europa Verlag, Zürich.

    Google Scholar 

  • Rutherford, E. (1911): The Scattering of alpha and beta Particles by Matter and the Structure of the Atom. Philosophical Magazine, 21: S. 669–688.

    Article  MATH  Google Scholar 

  • Salam, A. (1989): Ideals and Realities. World Scientific Publishing, Singapore.

    Google Scholar 

  • Scheibe, E. (1974): Popper and Quantum Logic. British Jour. for Philosophy of Science 25, S. 319–328.

    Article  MathSciNet  MATH  Google Scholar 

  • Scheibe, E. (2006): Die Philosophie der Physiker. C.H. Beck, München.

    Google Scholar 

  • Scheler, M. (1926): Die Wissensformen und die Gesellschaft. Der Neue-Geist Verlag, Leipzig.

    Google Scholar 

  • Schlosshauer, M., J. Kofler und A. Zeilinger (2013): A Snapshot of Foundational Attitudes Toward Quantum Mechanics. Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Mod. Phys. 44 (3), S. 222–230.

    Article  ADS  MATH  Google Scholar 

  • Schopenhauer, A. (1977): Die Welt als Wille und Vorstellung. Diogenes, Zürich.

    Google Scholar 

  • Schrödinger, E. (1926): Über das Verhältnis der Heisenberg-Born-Jordanschen Quantenmechnik zu der meinen. Annalen der Physik 79, S. 734–756.

    Article  MATH  Google Scholar 

  • Schrödinger, E. (1935): Die gegenwärtige Situation in der Quantenmechanik. Die Naturwissenschaften 23, S. 807–812, S. 823–828, S. 844–849.

    MATH  Google Scholar 

  • Schrödinger, E. (1985): Mein Leben, meine Weltansicht. Das philosophische Testament des Nobelpreisträgers. Paul Zsolnay, Wien.

    Google Scholar 

  • Schrödinger, E. (1989): Was ist Leben? Piper, München.

    Google Scholar 

  • Sellars, W. (1963): Empiricism and the Philosophy of Mind. In: Brandom, R. (Hg.), Science, Perception and Reality, S. 127–196. Routledge & Kegan Paul, London.

    Google Scholar 

  • Setoh, P., D. Wub, R. Baillargeona und R. Gelmanc (2013): Young infants have biological expectations about animals. Proc. Nat. Acad. Sci. USA 110, S. 15937–15942.

    Article  ADS  Google Scholar 

  • Shimony, A. (1978): Metaphysical problems in the foundations of quantum mechanics. International Philosophical Quarterly, 8: S. 2–17.

    ADS  Google Scholar 

  • Simpson, G. G. (1963): Biology and the nature of science. Science 139, S. 81–88.

    Article  ADS  Google Scholar 

  • Smorodinsky, Y. (1992): Heisenberg und Dirac: Die Bedeutung des Schönen in der Naturwissenschaft. In: Geyer, B., H. Herwig und H. Rechenberg (Hg.), Werner Heisenberg. Physiker und Philosoph. Verhandlungen der Konferenz „Werner Heisenberg als Physiker und Philosoph in Leipzig“, S. 364–368. Spektrum, Heidelberg.

    Google Scholar 

  • Stein, E. (1990): Getting Closer to the Truth: Realism and the Metaphysical Ramifications of Evolutionary Epistemology. In: Rescher, N. (Hg.), Evolution, Cognition and Realism. Studies in Evolutionary Epistemology, S. 119–129. University Press of America, Lanham, MD.

    Google Scholar 

  • Sterelny, K. und P. E. Griffiths (1999): Sex and Death: An Introduction to Philosophy of Biology. University Press, Chicago.

    Google Scholar 

  • Stöckler, M. (1984): Philosophische Probleme der relativistischen Quantenmechanik. Duncker & Humblot, Berlin.

    Google Scholar 

  • Stöckler, M. (1989): The wave function of the universe. In: Weingartner, P. und G. Schurz (Hg.), Philosophie der Naturwissenschaften. Akten des 13. Intern. Wittgenstein Symposiums. Hölder-Pichler-Tempsky, Wien.

    Google Scholar 

  • Stöckler, M. (1995): Zeit im Wechselspiel von Physik und Philosophie. In: Krüger, L. und B. Falkenburg (Hg.), Physik, Philosophie und die Einheit der Wissenschaften. Spektrum, Heidelberg.

    Google Scholar 

  • Tegmark, M. und J. A. Wheeler (2001): 100 Jahre Quantentheorie. Spektrum der Wissenschaft (April), S. 68–76.

    Google Scholar 

  • Teichert, D. (2006): Einführung in die Philosophie des Geistes. WBG, Darmstadt.

    Google Scholar 

  • Teller, P. (1995): An Interpretative Introduction to Quantum Field Theory. Princeton University Press, Princeton.

    MATH  Google Scholar 

  • Timpson, C. G. (2003): On a Supposed Conceptual Inadequacy of the Shannon Information in Quantum Mechanics. Stud. Hist. Phil. Mod. Phys. 33 (3), S. 441–468.

    Article  MathSciNet  MATH  Google Scholar 

  • Tomasello, M. (2002): Die kulturelle Entwicklung des menschlichen Denkens. Suhrkamp, Frankfurt/Main.

    Google Scholar 

  • Torgerson, J. R., D. Branning, C. H. Monken und L. Mandel (1995): Experimental demonstration of the violation of local realism without Bell inequalities. Phys. Lett. A 204, S. 323–328.

    Article  ADS  Google Scholar 

  • Tucholsky, K. (1929): Das Lächeln der Mona Lisa. Rowohlt, Berlin.

    Google Scholar 

  • Tugendhat, E. (2007): Anthropologie statt Metaphysik. Verlag C. H. Beck, München.

    Google Scholar 

  • von Uexküll, J. (1920): Umwelt und Innenwelt der Tiere. Springer, Berlin.

    Google Scholar 

  • Valentini, A. (1991): Signal-Locality, Uncertainty and the Subquantum H-Theorem. II. Phys. Lett. A 158, S. 1–8.

    Article  ADS  MathSciNet  Google Scholar 

  • Varela, F. J., E. Thompson und E. Rosch (1993): The Embodied Mind. Cognitive Science and Human Experience. MIT Press, Cambridge, MA.

    Google Scholar 

  • Vollmer, G. (1983): Evolutionäre Erkenntnistheorie. Hirzel, Stuttgart.

    Google Scholar 

  • Vollmer, G. (1985): Was können wir wissen? Band 1: Die Natur der Erkenntnis. Hirzel, Stuttgart.

    Google Scholar 

  • Vollmer, G. (1986): Was können wir wissen? Band 2: Die Erkenntnis der Natur. Hirzel, Stuttgart.

    Google Scholar 

  • Vollmer, G. (1995): Biophilosophie. Reclam, Stuttgart.

    Google Scholar 

  • Vollmer, G. (2003): Wieso können wir die Welt erkennen? Neue Beiträge zur Wissenschaftsphilosophie. Hirzel, Stuttgart.

    Google Scholar 

  • Wagner, G. P. und M. Laubichler (2004): Rupert Riedl and the Re-Synthesis of Evolutionary and Developmental Biology. Jour. of Experimental Zoology: Part B, 302B, S. 92–102.

    Article  Google Scholar 

  • Walter, H. (1999): Neurophilosophie der Willensfreiheit. Mentis, Paderborn.

    Google Scholar 

  • von Weizsäcker, C. F. (1980): Der Garten des Menschlichen. Beiträge zur geschichtlichen Anthropologie. Fischer, Frankfurt/Main.

    Google Scholar 

  • von Weizsäcker, C. F. (1985): Aufbau der Physik. Hanser, München.

    Google Scholar 

  • von Weizsäcker, C. F. (1992): Werner Heisenberg in memoriam. In: Köhler, W. (Hg.), Nova Acta Leopoldina. Carl Friedrich von Weizsäckers Reden in der Leopoldina. Neue Folge, Nr. 282, Bd. 68. Barth, Leipzig.

    Google Scholar 

  • Welsch, W. (2011): Immer nur der Mensch? Entwürfe zu einer anderen Anthropologie. Akademie Verlag, Berlin.

    Book  Google Scholar 

  • Weyl, H. (1928): Gruppentheorie und Quantenmechanik. Hirzel, Leipzig.

    MATH  Google Scholar 

  • Wickler, W. und L. Salwiczek (Hg.) (2001): Wie wir die Welt erkennen. Erkenntnisweisen im interdisziplinären Diskurs. Alber, Freiburg.

    Google Scholar 

  • Wigner, E. (1967): Remarks on the Mind-Body Question. In: Wigner, E. (Hg.), Symmetries and Reflections, S. 171–184. Indiana University Press, Bloomington.

    Google Scholar 

  • Wilczek, F. (2013): The enigmatic electron. Nature 498, S. 31–32.

    Article  ADS  Google Scholar 

  • Wingert, L. (2006): Grenzen der naturalistischen Selbstobjektivierung. In: Sturma, D. (Hg.), Philosophie und Neurowissenschaften, S. 240–260. Suhrkamp, Frankfurt/Main.

    Google Scholar 

  • Wittgenstein, L. (2001): Philosophische Untersuchungen. Suhrkamp, Frankfurt/Main.

    MATH  Google Scholar 

  • Wu, C. S., E. Ambler, R. W. Hayward, D. D. Hoppes und R. P. Hudson (1957): Experimental Test of Parity Conservation in Beta Decay. Phys. Rev. 105, S. 1413.

    Article  ADS  Google Scholar 

  • Wuketits, F. M. (1998): Eine kurze Kulturgeschichte der Biologie. Mythen, Darwinismus, Gentechnik. Primus, Darmstadt.

    Google Scholar 

  • Wünsch, G. (2000): Einführung in die Philosophie der Chemie. Königshausen und Neumann, Würzburg.

    Google Scholar 

  • Yukawa, H. (1973): Creativity and Intuition. Kodansha, Tokyo.

    Google Scholar 

  • Zajonc, A. G., L. J. Wang, X. Y. Zou und L. Mandel (1991): Quantum interference and the quantum eraser. Nature 353, S. 507–508.

    Article  ADS  Google Scholar 

  • Zbinden, H., J. Brendel, N. Gisin, und W. Tittel (2001): Experimental test of nonlocal quantum correlations in relativistic configurations. Phys. Rev. A 63, S. 022111.

    Article  ADS  MATH  Google Scholar 

  • Zeilinger, A. (1999): A Foundational Principle for Quantum Mechanics. Found. Phys. 29 (4), S. 631–643.

    Article  MathSciNet  Google Scholar 

  • Zeilinger, A. (2003): Einsteins Schleier. Die neue Welt der Quantenphysik. C. H. Beck, München.

    Google Scholar 

  • Zeilinger, A. (2007): Einsteins Spuk: Teleportation und weitere Mysterien der Quantenphysik. Goldmann, München.

    Google Scholar 

  • Zeki, S., J. P. Romaya, D. M. T. Benincasa und M. F. Atiyah (2014): The experience of mathematical beauty and its neural correlates. Front. Hum. Neurosci. 8, S. 68.

    Article  Google Scholar 

  • Zurek, W. H. (1991): Decoherence and the transition from quantum to classical. Physics Today 44, S. 36–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eidemüller, D. (2017). Alternative Interpretationen der Quantenmechanik. In: Quanten – Evolution – Geist. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49379-3_5

Download citation

Publish with us

Policies and ethics