Skip to main content

Pneumoconiosis and Environmentally Induced Lung Diseases

  • Chapter
  • First Online:
Pathology of Lung Disease
  • 3116 Accesses

Abstract

Pneumoconiosis is characterized by an inhalation of foreign nonliving material in the widest sense but is usually restricted to inorganic matter. Inhalation causes a tissue reaction, which can be any kind of pneumonia, granulomatosis, or similar. Primarily when thinking about pneumoconiosis, silicosis and asbestosis will immediately come into one’s mind; however, there are many more agents causing pulmonary diseases. As in many other diseases in all kinds of pneumoconiosis, there is a dose-effect relationship: this means there is a threshold dose required to induce disease (amount of a mineral) and duration of exposure. In addition, the dimension of the particles is important too: particles larger than 10 μm are deposited in the larger airways; particles below 2–5 μm will reach the alveolar periphery. But there is another factor, aerodynamic diameter: particles are within the airstream and will orient themselves along the axis of the airflow; therefore, asbestos fibers although 100–200 μm in length are less than 5 μm thick, which means they are oriented within the airstream and might reach small bronchioles before being trapped at bifurcations. Another quality of inhaled mineral dust is durability: some metals are easily dissolved in extracellular fluids and can be absorbed and removed by macrophages. Other minerals such as quartz and asbestos fibers are long lasting and resist degradation by macrophages for months. Finally also the chemical composition plays a role: highly toxic compounds will cause acute injury to the lung, whereas other minerals cause injury only in huge quantities, as example for both is chromates versus titanium oxides. On the other hand, our lung has developed many clearance and defense mechanisms during evolution. We all inhale some amount of quartz, but usually do not develop silicosis, because quartz is cleared. There are several mechanisms: The evolutionary oldest mechanism is the mucus escalator system; mucus is produced by goblet cells and moved toward the larynx. Particles deposited within the mucus are transported with it and expectorated or coughed out. Another evolutionary old mechanism is clearance by macrophages; these cells of the innate immune system patrol through the lungs, phagocytose, and degrade foreign particles, thus preventing toxic injury. Finally there is also a chemical defense system. The epithelial cells of the airways and the pneumocytes produce two different enzyme systems: oxidizing enzymes such as the cytochromes and detoxifying enzymes such as the (de)aminidases, glutathione synthases and glutathione transferases, etc. [1–5]. All these form together an efficient defense against inhaled mineral particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cohen GM. Pulmonary metabolism of foreign compounds: its role in metabolic activation. Environ Health Perspect. 1990;85:31–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Beckmann JD, Spurzem JR, Rennard SI. Phenol sulfotransferase expression in the airways: enzymological and immunohistochemical demonstration. Cell Tissue Res. 1993;274:475–85.

    Article  CAS  PubMed  Google Scholar 

  3. Wright DT, Cohn LA, Li H, Fischer B, Li CM, Adler KB. Interactions of oxygen radicals with airway epithelium. Environ Health Perspect. 1994;102 Suppl 10:85–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ibanez-Tallon I, Heintz N, Omran H, Salathe M, Forteza R, Conner GE, Lillehoj ER, Kim KC, Foster WM, Rubin BK. To beat or not to beat: roles of cilia in development and disease post-secretory fate of host defence components in mucus airway mucus: its components and function mucociliary transport and cough in humans physiology of airway mucus clearance. Hum Mol Genet. 2003;12(Spec No 1):R27–35.

    Article  CAS  PubMed  Google Scholar 

  5. Baulig A, Garlatti M, Bonvallot V, Marchand A, Barouki R, Marano F, Baeza-Squiban A. Involvement of reactive oxygen species in the metabolic pathways triggered by diesel exhaust particles in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2003;285:L671–9.

    Article  CAS  PubMed  Google Scholar 

  6. Allison AC. Pathogenic effects of inhaled particles and antigens. Ann N Y Acad Sci. 1974;221:299–308.

    Article  CAS  PubMed  Google Scholar 

  7. Ghio AJ, Kennedy TP, Schapira RM, Crumbliss AL, Hoidal JR. Hypothesis: is lung disease after silicate inhalation caused by oxidant generation? Lancet. 1990;336:967–9.

    Article  CAS  PubMed  Google Scholar 

  8. Mossman BT, Churg A. Mechanisms in the pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med. 1998;157:1666–80.

    Article  CAS  PubMed  Google Scholar 

  9. Ding M, Chen F, Shi X, Yucesoy B, Mossman B, Vallyathan V. Diseases caused by silica: mechanisms of injury and disease development. Int Immunopharmacol. 2002;2:173–82.

    Article  CAS  PubMed  Google Scholar 

  10. Williams AO, Flanders KC, Saffiotti U. Immunohistochemical localization of transforming growth factor-beta 1 in rats with experimental silicosis, alveolar type II hyperplasia, and lung cancer. Am J Pathol. 1993;142:1831–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hnizdo E, Murray J, Klempman S. Lung cancer in relation to exposure to silica dust, silicosis and uranium production in South African gold miners. Thorax. 1997;52:271–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tsuda T, Mino Y, Babazono A, Shigemi J, Otsu T, Yamamoto E, Kanazawa S. A case-control study of lung cancer in relation to silica exposure and silicosis in a rural area in Japan. Ann Epidemiol. 2002;12:288–94.

    Article  PubMed  Google Scholar 

  13. Centers for Disease Control and Prevention (CDC). Silicosis in dental laboratory technicians – five states, 1994–2000. MMWR Morb Mortal Wkly Rep. 2004;53:195–97.

    Google Scholar 

  14. Reuzel PG, Bruijntjes JP, Feron VJ, Woutersen RA. Subchronic inhalation toxicity of amorphous silicas and quartz dust in rats. Food Chem Toxicol. 1991;29:341–54.

    Article  CAS  PubMed  Google Scholar 

  15. Heppleston AG. Silica, pneumoconiosis, and carcinoma of the lung. Am J Ind Med. 1985;7:285–94.

    Article  CAS  PubMed  Google Scholar 

  16. Saffiotti U. Lung cancer induction by crystalline silica. Prog Clin Biol Res. 1992;374:51–69.

    CAS  PubMed  Google Scholar 

  17. Honma K, Chiyotani K, Kimura K. Silicosis, mixed dust pneumoconiosis, and lung cancer. Am J Ind Med. 1997;32:595–9.

    Article  CAS  PubMed  Google Scholar 

  18. Umemura S, Fujimoto N, Hiraki A, Gemba K, Takigawa N, Fujiwara K, Fujii M, Umemura H, Satoh M, Tabata M, Ueoka H, Kiura K, Kishimoto T, Tanimoto M. Aberrant promoter hypermethylation in serum DNA from patients with silicosis. Carcinogenesis. 2008;29:1845–9.

    Article  CAS  PubMed  Google Scholar 

  19. Roggli VL, Gibbs AR, Attanoos R, Churg A, Popper H, Cagle P, Corrin B, Franks TJ, Galateau-Salle F, Galvin J, Hasleton PS, Henderson DW, Honma K. Pathology of asbestosis- an update of the diagnostic criteria: report of the asbestosis committee of the college of American pathologists and pulmonary pathology society. Arch Pathol Lab Med. 2010;134:462–80.

    PubMed  Google Scholar 

  20. Churg A, Wright JL. Small airways disease and mineral dust exposure. Pathol Annu. 1983;18(Pt 2):233–51.

    PubMed  Google Scholar 

  21. Filipenko D, Wright JL, Churg A. Pathologic changes in the small airways of the guinea pig after amosite asbestos exposure. Am J Pathol. 1985;119:273–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wright JL, Churg A. Morphology of small-airway lesions in patients with asbestos exposure. Hum Pathol. 1984;15:68–74.

    Article  CAS  PubMed  Google Scholar 

  23. Selikoff IJ, Hammond EC, Churg J. Carcinogenicity of amosite asbestos. Arch Environ Health. 1972;25:183–6.

    Article  CAS  PubMed  Google Scholar 

  24. Kannerstein M, Churg J, McCaughey WT. Asbestos and mesothelioma: a review. Pathol Annu. 1978;13(Pt 1):81–129.

    CAS  PubMed  Google Scholar 

  25. Churg A, Vedal S. Fiber burden and patterns of asbestos-related disease in workers with heavy mixed amosite and chrysotile exposure. Am J Respir Crit Care Med. 1994;150:663–9.

    Article  CAS  PubMed  Google Scholar 

  26. Jaurand MC, Fleury-Feith J. Pathogenesis of malignant pleural mesothelioma. Respirology. 2005;10:2–8.

    Article  PubMed  Google Scholar 

  27. Gibbs GW, Berry G. Mesothelioma and asbestos. Regul Toxicol Pharmacol. 2008;52:S223–31.

    Article  CAS  PubMed  Google Scholar 

  28. Hobson J, Gilks B, Wright J, Churg A. Direct enhancement by cigarette smoke of asbestos fiber penetration and asbestos-induced epithelial proliferation in rat tracheal explants. J Natl Cancer Inst. 1988;80:518–21.

    Article  CAS  PubMed  Google Scholar 

  29. Baris YI, Saracci R, Simonato L, Skidmore JW, Artvinli M. Malignant mesothelioma and radiological chest abnormalities in two villages in Central Turkey. An epidemiological and environmental investigation. Lancet. 1981;1:984–7.

    Article  CAS  PubMed  Google Scholar 

  30. Baris B, Demir AU, Shehu V, Karakoca Y, Kisacik G, Baris YI. Environmental fibrous zeolite (erionite) exposure and malignant tumors other than mesothelioma. J Environ Pathol Toxicol Oncol. 1996;15:183–9.

    CAS  PubMed  Google Scholar 

  31. Comba P, Gianfagna A, Paoletti L. Pleural mesothelioma cases in Biancavilla are related to a new fluoro-edenite fibrous amphibole. Arch Environ Health. 2003;58:229–32.

    Article  PubMed  Google Scholar 

  32. Constantopoulos SH. Environmental mesothelioma associated with tremolite asbestos: lessons from the experiences of Turkey, Greece, Corsica, New Caledonia and Cyprus. Regul Toxicol Pharmacol. 2008;52:S110–5.

    Article  CAS  PubMed  Google Scholar 

  33. Carbone M, Baris YI, Bertino P, Brass B, Comertpay S, Dogan AU, Gaudino G, Jube S, Kanodia S, Partridge CR, Pass HI, Rivera ZS, Steele I, Tuncer M, Way S, Yang H, Miller A. Erionite exposure in North Dakota and Turkish villages with mesothelioma. Proc Natl Acad Sci U S A. 2011;108:13618–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ortega-Guerrero MA, Carrasco-Nunez G. Environmental occurrence, origin, physical and geochemical properties, and carcinogenic potential of erionite near San Miguel de Allende, Mexico. Environ Geochem Health. 2014;36:517–29.

    Article  CAS  PubMed  Google Scholar 

  35. Roushdy-Hammady I, Siegel J, Emri S, Testa JR, Carbone M. Genetic-susceptibility factor and malignant mesothelioma in the Cappadocian region of Turkey. Lancet. 2001;357:444–5.

    Article  CAS  PubMed  Google Scholar 

  36. Cortex Pimentel J, Peixoto Menezes A. Pulmonary and hepatic granulomatous disorders due to the inhalation of cement and mica dusts. Thorax. 1978;33:219–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sahu AP, Shanker R, Zaidi SH. Pulmonary response to kaolin, mica and talc in mice. Exp Pathol (Jena). 1978;16:276–82.

    CAS  Google Scholar 

  38. Zinman C, Richards GA, Murray J, Phillips JI, Rees DJ, Glyn-Thomas R. Mica dust as a cause of severe pneumoconiosis. Am J Ind Med. 2002;41:139–44.

    Article  PubMed  Google Scholar 

  39. Gibbs AE, Pooley FD, Griffiths DM, Mitha R, Craighead JE, Ruttner JR. Talc pneumoconiosis: a pathologic and mineralogic study. Hum Pathol. 1992;23:1344–54.

    Article  CAS  PubMed  Google Scholar 

  40. Morgan WK, Donner A, Higgins IT, Pearson MG, Rawlings Jr W. The effects of kaolin on the lung. Am Rev Respir Dis. 1988;138:813–20.

    Article  CAS  PubMed  Google Scholar 

  41. Wagner JC, Pooley FD, Gibbs A, Lyons J, Sheers G, Moncrieff CB. Inhalation of china stone and china clay dusts: relationship between the mineralogy of dust retained in the lungs and pathological changes. Thorax. 1986;41:190–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Altekruse EB, Chaudhary BA, Pearson MG, Morgan WK. Kaolin dust concentrations and pneumoconiosis at a kaolin mine. Thorax. 1984;39:436–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Al-Ghimlas F, Hoffstein V. Pleuroparenchymal lung disease secondary to nonoccupational exposure to vermiculite. Can Respir J. 2007;14:164–6.

    Article  PubMed  PubMed Central  Google Scholar 

  44. McDonald JC, Sebastien P, Armstrong B. Radiological survey of past and present vermiculite miners exposed to tremolite. Br J Ind Med. 1986;43:445–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Huuskonen MS, Tossavainen A, Koskinen H, Zitting A, Korhonen O, Nickels J, Korhonen K, Vaaranen V. Wollastonite exposure and lung fibrosis. Environ Res. 1983;30:291–304.

    Article  CAS  PubMed  Google Scholar 

  46. McConnell EE. Fibrogenic effect of wollastonite compared with asbestos dust and dusts containing quartz. Occup Environ Med. 1995;52:621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Algranti E, Handar AM, Dumortier P, Mendonca EM, Rodrigues GL, Santos AM, Mauad T, Dolhnikoff M, De Vuyst P, Saldiva PH, Bussacos MA. Pneumoconiosis after sericite inhalation. Occup Environ Med. 2005;62, e2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pott F. Animal experiments on biological effects of mineral fibres. IARC Sci Publ. 1980;30:261–72.

    Google Scholar 

  49. Laney AS, Weissman DN. Respiratory diseases caused by coal mine dust. J Occup Environ Med. 2014;56 Suppl 10:S18–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mo J, Wang L, Au W, Su M. Prevalence of coal workers’ pneumoconiosis in China: a systematic analysis of 2001–2011 studies. Int J Hyg Environ Health. 2014;217:46–51.

    Article  PubMed  Google Scholar 

  51. Petsonk EL, Rose C, Cohen R. Coal mine dust lung disease. New lessons from old exposure. Am J Respir Crit Care Med. 2013;187:1178–85.

    Article  CAS  PubMed  Google Scholar 

  52. Vallyathan V, Landsittel DP, Petsonk EL, Kahn J, Parker JE, Osiowy KT, Green FH. The influence of dust standards on the prevalence and severity of coal worker’s pneumoconiosis at autopsy in the United States of America. Arch Pathol Lab Med. 2011;135:1550–6.

    Article  PubMed  Google Scholar 

  53. Liebow AA. Pathology of coal workers’ pneumoconiosis. IMS Ind Med Surg. 1970;39:118–9.

    CAS  PubMed  Google Scholar 

  54. Oberdorster G. Lung particle overload: implications for occupational exposures to particles. Regul Toxicol Pharmacol. 1995;21:123–35.

    Article  CAS  PubMed  Google Scholar 

  55. Kim KA, Cho YY, Cho JS, Yang KH, Lee WK, Lee KH, Kim YS, Lim Y. Tumor necrosis factor-alpha gene promoter polymorphism in coal workers’ pneumoconiosis. Mol Cell Biochem. 2002;234–235:205–9.

    Article  PubMed  Google Scholar 

  56. Nadif R, Jedlicka A, Mintz M, Bertrand JP, Kleeberger S, Kauffmann F. Effect of TNF and LTA polymorphisms on biological markers of response to oxidative stimuli in coal miners: a model of gene-environment interaction. Tumour necrosis factor and lymphotoxin alpha. J Med Genet. 2003;40:96–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Miller BG, MacCalman L. Cause-specific mortality in British coal workers and exposure to respirable dust and quartz. Occup Environ Med. 2010;67:270–6.

    Article  PubMed  Google Scholar 

  58. Laney AS, Attfield MD. Quartz exposure can cause pneumoconiosis in coal workers. J Occup Environ Med. 2009;51:867. author reply 868.

    Article  PubMed  Google Scholar 

  59. McCunney RJ, Morfeld P, Payne S. What component of coal causes coal workers’ pneumoconiosis? J Occup Environ Med. 2009;51:462–71.

    Article  PubMed  Google Scholar 

  60. Ma JY, Ma JK. The dual effect of the particulate and organic components of diesel exhaust particles on the alteration of pulmonary immune/inflammatory responses and metabolic enzymes. J Environ Sci Health Part C Environ Carcinog Ecotoxicol Rev. 2002;20:117–47.

    Article  CAS  Google Scholar 

  61. Lehmann AD, Blank F, Baum O, Gehr P, Rothen-Rutishauser BM. Diesel exhaust particles modulate the tight junction protein occludin in lung cells in vitro. Part Fibre Toxicol. 2009;6:26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Hannigan MP, Busby Jr WF, Cass GR. Source contributions to the mutagenicity of urban particulate air pollution. J Air Waste Manag Assoc. 2005;55:399–410.

    Article  CAS  PubMed  Google Scholar 

  63. Alexis NE, Carlsten C. Interplay of air pollution and asthma immunopathogenesis: a focused review of diesel exhaust and ozone. Int Immunopharmacol. 2014;23:347–55.

    Article  CAS  PubMed  Google Scholar 

  64. Moller W, Hofer T, Ziesenis A, Karg E, Heyder J. Ultrafine particles cause cytoskeletal dysfunctions in macrophages. Toxicol Appl Pharmacol. 2002;182:197–207.

    Article  PubMed  CAS  Google Scholar 

  65. Rengasamy A, Barger MW, Kane E, Ma JK, Castranova V, Ma JY. Diesel exhaust particle-induced alterations of pulmonary phase I and phase II enzymes of rats. J Toxicol Environ Health A. 2003;66:153–67.

    Article  CAS  PubMed  Google Scholar 

  66. Zhou F, Li S, Jia W, Lv G, Song C, Kang C, Zhang Q. Effects of diesel exhaust particles on microRNA-21 in human bronchial epithelial cells and potential carcinogenic mechanisms. Mol Med Rep. 2015;12:2329–35.

    CAS  PubMed  Google Scholar 

  67. Jaguin M, Fardel O, Lecureur V. AhR-dependent secretion of PDGF-BB by human classically activated macrophages exposed to DEP extracts stimulates lung fibroblast proliferation. Toxicol Appl Pharmacol. 2015;285:170–8.

    Article  CAS  PubMed  Google Scholar 

  68. Koh DH, Kong HJ, Oh CM, Jung KW, Park D, Won YJ. Lung cancer risk in professional drivers in Korea: a population-based proportionate cancer incidence ratio study. J Occup Health. 2015;57:324–30.

    Article  CAS  PubMed  Google Scholar 

  69. Lasfargues G, Lison D, Maldague P, Lauwerys R. Comparative study of the acute lung toxicity of pure cobalt powder and cobalt-tungsten carbide mixture in rat. Toxicol Appl Pharmacol. 1992;112:41–50.

    Article  CAS  PubMed  Google Scholar 

  70. Lison D, Lauwerys R, Demedts M, Nemery B. Experimental research into the pathogenesis of cobalt/hard metal lung disease. Eur Respir J. 1996;9:1024–8.

    Article  CAS  PubMed  Google Scholar 

  71. Naqvi AH, Hunt A, Burnett BR, Abraham JL. Pathologic spectrum and lung dust burden in giant cell interstitial pneumonia (hard metal disease/cobalt pneumonitis): review of 100 cases. Arch Environ Occup Health. 2008;63:51–70.

    Article  PubMed  Google Scholar 

  72. Fontenot AP, Amicosante M. Metal-induced diffuse lung disease. Semin Respir Crit Care Med. 2008;29:662–9.

    Article  PubMed  Google Scholar 

  73. Blanc PD. Is giant cell interstitial pneumonitis synonymous with hard metal lung disease? Am J Respir Crit Care Med. 2007;176:834. author reply 834–835.

    Article  PubMed  Google Scholar 

  74. Herbert A, Sterling G, Abraham J, Corrin B. Desquamative interstitial pneumonia in an aluminum welder. Hum Pathol. 1982;13:694–9.

    Article  CAS  PubMed  Google Scholar 

  75. Hull MJ, Abraham JL. Aluminum welding fume-induced pneumoconiosis. Hum Pathol. 2002;33:819–25.

    Article  PubMed  Google Scholar 

  76. Kelleher P, Pacheco K, Newman LS. Inorganic dust pneumonias: the metal-related parenchymal disorders. Environ Health Perspect. 2000;108 Suppl 4:685–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schwarz Y, Kivity S, Fischbein A, Abraham JL, Fireman E, Moshe S, Dannon Y, Topilsky M, Greif J. Evaluation of workers exposed to dust containing hard metals and aluminum oxide. Am J Ind Med. 1998;34:177–82.

    Article  CAS  PubMed  Google Scholar 

  78. Kang KY, Bice D, Hoffman E, D’Amato R, Salvaggio J. Experimental studies of sensitization to beryllium, zirconium, and aluminum compounds in the rabbit. J Allergy Clin Immunol. 1977;59:425–36.

    Article  CAS  PubMed  Google Scholar 

  79. Newman LS. Metals that cause sarcoidosis. Semin Respir Infect. 1998;13:212–20.

    CAS  PubMed  Google Scholar 

  80. Nemery B. Metal toxicity and the respiratory tract. Eur Respir J. 1990;3:202–19.

    CAS  PubMed  Google Scholar 

  81. Popper HH, Woldrich A. Oxygen radical formation a probable mechanism for chromate toxicity. Prog Histochem Cytochem. 1991;23:220–6.

    Article  CAS  PubMed  Google Scholar 

  82. Popper HH, Wiespainer G, Leingartner E, Weybora W, Ratschek M. Short term chromate inhalation in a computer-assisted inhalation chamber: immediate toxicity and late cancer development. Environ Hyg. 1992;3:127–31.

    Google Scholar 

  83. Popper H, Grygar E, Ingolic E, Wawschinek O. Cytotoxicity of chromium-III and -VI compounds. I. In vitro studies using different cell culture systems. Inhal Toxicol. 1993;5:345–70.

    Article  CAS  Google Scholar 

  84. Kolarzyk E, Stepniewski M, Zapolska I. Occurrence of pulmonary diseases in steel mill workers. Int J Occup Med Environ Health. 2000;13:103–12.

    CAS  PubMed  Google Scholar 

  85. Kim YH, Chung YK, Kim C, Nam ES, Kim HJ, Joo Y. A case of hypersensitivity pneumonitis with giant cells in a female dental technician. Ann Occup Environ Med. 2013;25:19.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kitamura H, Yoshimura Y, Tozawa T, Koshi K. Effects of cemented tungsten carbide dust on rat lungs following intratracheal injection of saline suspension. Acta Pathol Jpn. 1980;30:241–53.

    CAS  PubMed  Google Scholar 

  87. Bastian S, Busch W, Kuhnel D, Springer A, Meissner T, Holke R, Scholz S, Iwe M, Pompe W, Gelinsky M, Potthoff A, Richter V, Ikonomidou C, Schirmer K. Toxicity of tungsten carbide and cobalt-doped tungsten carbide nanoparticles in mammalian cells in vitro. Environ Health Perspect. 2009;117:530–6.

    Article  CAS  PubMed  Google Scholar 

  88. Stefaniak AB, Virji MA, Day GA. Characterization of exposures among cemented tungsten carbide workers. Part I: size-fractionated exposures to airborne cobalt and tungsten particles. J Expo Sci Environ Epidemiol. 2009;19:475–91.

    Article  CAS  PubMed  Google Scholar 

  89. Rajendran N, Hu SC, Sullivan D, Muzzio M, Detrisac CJ, Venezia C. Toxicologic evaluation of tungsten: 28-day inhalation study of tungsten blue oxide in rats. Inhal Toxicol. 2012;24:985–94.

    Article  CAS  PubMed  Google Scholar 

  90. Sundaram P, Agrawal K, Mandke JV, Joshi JM. Giant cell pneumonitis induced by cobalt. Indian J Chest Dis Allied Sci. 2001;43:47–9.

    CAS  PubMed  Google Scholar 

  91. Lison D, Lauwerys R. In vitro cytotoxic effects of cobalt-containing dusts on mouse peritoneal and rat alveolar macrophages. Environ Res. 1990;52:187–98.

    Article  CAS  PubMed  Google Scholar 

  92. Lison D. Human toxicity of cobalt-containing dust and experimental studies on the mechanism of interstitial lung disease (hard metal disease). Crit Rev Toxicol. 1996;26:585–616.

    Article  CAS  PubMed  Google Scholar 

  93. Roesems G, Hoet PH, Dinsdale D, Demedts M, Nemery B. In vitro cytotoxicity of various forms of cobalt for rat alveolar macrophages and type II pneumocytes. Toxicol Appl Pharmacol. 2000;162:2–9.

    Article  CAS  PubMed  Google Scholar 

  94. Cho WS, Duffin R, Bradley M, Megson IL, Macnee W, Howie SE, Donaldson K. NiO and Co3O4 nanoparticles induce lung DTH-like responses and alveolar lipoproteinosis. Eur Respir J. 2012;39:546–57.

    Article  CAS  PubMed  Google Scholar 

  95. Kazantzis G. Cadmium: sources, exposure and possible carcinogenicity. IARC Sci Publ. 1986;71:93–101.

    Google Scholar 

  96. Oberdorster G, Cherian MG, Baggs RB. Importance of species differences in experimental pulmonary carcinogenicity of inhaled cadmium for extrapolation to humans. Toxicol Lett. 1994;72:339–43.

    Article  CAS  PubMed  Google Scholar 

  97. Boffetta P. Methodological aspects of the epidemiological association between cadmium and cancer in humans. IARC Sci Publ. 1992;118:425–34.

    Google Scholar 

  98. Bachelet M, Pinot F, Polla RI, Francois D, Richard MJ, Vayssier-Taussat M, Polla BS. Toxicity of cadmium in tobacco smoke: protection by antioxidants and chelating resins. Free Radic Res. 2002;36:99–106.

    Article  CAS  PubMed  Google Scholar 

  99. Verougstraete V, Lison D, Hotz P. A systematic review of cytogenetic studies conducted in human populations exposed to cadmium compounds. Mutat Res. 2002;511:15–43.

    Article  CAS  PubMed  Google Scholar 

  100. Waalkes MP. Cadmium carcinogenesis. Mutat Res. 2003;533:107–20.

    Article  CAS  PubMed  Google Scholar 

  101. Garcia-Esquinas E, Pollan M, Tellez-Plaza M, Francesconi KA, Goessler W, Guallar E, Umans JG, Yeh J, Best LG, Navas-Acien A. Cadmium exposure and cancer mortality in a prospective cohort: the strong heart study. Environ Health Perspect. 2014;122:363–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Luevano J, Damodaran C. A review of molecular events of cadmium-induced carcinogenesis. J Environ Pathol Toxicol Oncol. 2014;33:183–94.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Liu J, Qu W, Kadiiska MB. Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharmacol. 2009;238:209–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kundu S, Sengupta S, Bhattacharyya A. EGFR upregulates inflammatory and proliferative responses in human lung adenocarcinoma cell line (A549), induced by lower dose of cadmium chloride. Inhal Toxicol. 2011;23:339–48.

    Article  CAS  PubMed  Google Scholar 

  105. Jing Y, Liu LZ, Jiang Y, Zhu Y, Guo NL, Barnett J, Rojanasakul Y, Agani F, Jiang BH. Cadmium increases HIF-1 and VEGF expression through ROS, ERK, and AKT signaling pathways and induces malignant transformation of human bronchial epithelial cells. Toxicol Sci. 2012;125:10–9.

    Article  CAS  PubMed  Google Scholar 

  106. Zhou Z, Wang C, Liu H, Huang Q, Wang M, Lei Y. Cadmium induced cell apoptosis, DNA damage, decreased DNA repair capacity, and genomic instability during malignant transformation of human bronchial epithelial cells. Int J Med Sci. 2013;10:1485–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Person RJ, Tokar EJ, Xu Y, Orihuela R, Ngalame NN, Waalkes MP. Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells. Toxicol Appl Pharmacol. 2013;273:281–8.

    Article  CAS  PubMed  Google Scholar 

  108. Eisler R. Health risks of gold miners: a synoptic review. Environ Geochem Health. 2003;25:325–45.

    Article  CAS  PubMed  Google Scholar 

  109. Kanluen S, Gottlieb CA. A clinical pathologic study of four adult cases of acute mercury inhalation toxicity. Arch Pathol Lab Med. 1991;115:56–60.

    CAS  PubMed  Google Scholar 

  110. Liu J, Lei D, Waalkes MP, Beliles RP, Morgan DL. Genomic analysis of the rat lung following elemental mercury vapor exposure. Toxicol Sci. 2003;74:174–81.

    Article  CAS  PubMed  Google Scholar 

  111. Zhao J, Shi X, Castranova V, Ding M. Occupational toxicology of nickel and nickel compounds. J Environ Pathol Toxicol Oncol. 2009;28:177–208.

    Article  PubMed  Google Scholar 

  112. Sunderman Jr FW. A review of the metabolism and toxicology of nickel. Ann Clin Lab Sci. 1977;7:377–98.

    CAS  PubMed  Google Scholar 

  113. Johansson A, Curstedt T, Robertson B, Camner P. Rabbit lung after inhalation of soluble nickel. II. Effects on lung tissue and phospholipids. Environ Res. 1983;31:399–412.

    Article  CAS  PubMed  Google Scholar 

  114. Benson JM, Burt DG, Cheng YS, Hahan FF, Haley PJ, Henderson RF, Hobbs CH, Pickrell JA, Dunnick JK. Biochemical responses of rat and mouse lung to inhaled nickel compounds. Toxicology. 1989;57:255–66.

    Article  CAS  PubMed  Google Scholar 

  115. Dunnick JK, Elwell MR, Benson JM, Hobbs CH, Hahn FF, Haly PJ, Cheng YS, Eidson AF. Lung toxicity after 13-week inhalation exposure to nickel oxide, nickel subsulfide, or nickel sulfate hexahydrate in F344/N rats and B6C3F1 mice. Fundam Appl Toxicol. 1989;12:584–94.

    Article  CAS  PubMed  Google Scholar 

  116. Savolainen H. Biochemical and clinical aspects of nickel toxicity. Rev Environ Health. 1996;11:167–73.

    Article  CAS  PubMed  Google Scholar 

  117. Freitas M, Barcellos-de-Souza P, Barja-Fidalgo C, Fernandes E. Nickel induces apoptosis in human neutrophils. Biometals. 2013;26:13–21.

    Article  CAS  PubMed  Google Scholar 

  118. Kenyon EM, Hughes MF. A concise review of the toxicity and carcinogenicity of dimethylarsinic acid. Toxicology. 2001;160:227–36.

    Article  CAS  PubMed  Google Scholar 

  119. Jones SR, Atkin P, Holroyd C, Lutman E, Batlle JV, Wakeford R, Walker P. Lung cancer mortality at a UK tin smelter. Occup Med (Lond). 2007;57:238–45.

    Article  CAS  Google Scholar 

  120. Homma S, Miyamoto A, Sakamoto S, Kishi K, Motoi N, Yoshimura K. Pulmonary fibrosis in an individual occupationally exposed to inhaled indium-tin oxide. Eur Respir J. 2005;25:200–4.

    Article  CAS  PubMed  Google Scholar 

  121. Lison D, Laloy J, Corazzari I, Muller J, Rabolli V, Panin N, Huaux F, Fenoglio I, Fubini B. Sintered indium-tin-oxide (ITO) particles: a new pneumotoxic entity. Toxicol Sci. 2009;108:472–81.

    Article  CAS  PubMed  Google Scholar 

  122. Hazard JB. Pathologic changes of beryllium disease; the acute disease. AMA Arch Ind Health. 1959;19:179–83.

    CAS  PubMed  Google Scholar 

  123. Machle W, Beyer E, Gregorious F. Berylliosis; acute pneumonitis and pulmonary granulomatosis of beryllium workers. Occup Med (Chic Ill). 1948;5:671–83.

    CAS  Google Scholar 

  124. Jones Williams W. Beryllium disease. Postgrad Med J. 1988;64:511–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Leininger JR, Farrell RL, Johnson GR. Acute lung lesions due to zirconium and aluminum compounds in hamsters. Arch Pathol Lab Med. 1977;101:545–9.

    CAS  PubMed  Google Scholar 

  126. Hadjimichael OC, Brubaker RE. Evaluation of an occupational respiratory exposure to a zirconium-containing dust. J Occup Med. 1981;23:543–7.

    CAS  PubMed  Google Scholar 

  127. Elmore AR. Final report on the safety assessment of aluminum silicate, calcium silicate, magnesium aluminum silicate, magnesium silicate, magnesium trisilicate, sodium magnesium silicate, zirconium silicate, attapulgite, bentonite, Fuller’s earth, hectorite, kaolin, lithium magnesium silicate, lithium magnesium sodium silicate, montmorillonite, pyrophyllite, and zeolite. Int J Toxicol. 2003;22 Suppl 1:37–102.

    PubMed  Google Scholar 

  128. McCleskey TM, Buchner V, Field RW, Scott BL. Recent advances in understanding the biomolecular basis of chronic beryllium disease: a review. Rev Environ Health. 2009;24:75–115.

    CAS  PubMed  Google Scholar 

  129. Freiman DG, Hardy HL. Beryllium disease. The relation of pulmonary pathology to clinical course and prognosis based on a study of 130 cases from the U.S. beryllium case registry. Hum Pathol. 1970;1:25–44.

    Article  CAS  PubMed  Google Scholar 

  130. Fontenot AP, Torres M, Marshall WH, Newman LS, Kotzin BL. Beryllium presentation to CD4+ T cells underlies disease-susceptibility HLA-DP alleles in chronic beryllium disease. Proc Natl Acad Sci U S A. 2000;97:12717–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Fireman E, Haimsky E, Noiderfer M, Priel I, Lerman Y. Misdiagnosis of sarcoidosis in patients with chronic beryllium disease. Sarcoidosis Vasc Diffus Lung Dis. 2003;20:144–8.

    Google Scholar 

  132. Silveira LJ, McCanlies EC, Fingerlin TE, Van Dyke MV, Mroz MM, Strand M, Fontenot AP, Bowerman N, Dabelea DM, Schuler CR, Weston A, Maier LA. Chronic beryllium disease, HLA-DPB1, and the DP peptide binding groove. J Immunol. 2012;189:4014–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Werfel U, Schneider J, Rodelsperger K, Kotter J, Popp W, Woitowitz HJ, Zieger G. Sarcoid granulomatosis after zirconium exposure with multiple organ involvement. Eur Respir J. 1998;12:750.

    Article  CAS  PubMed  Google Scholar 

  134. Rossman MD, Kern JA, Elias JA, Cullen MR, Epstein PE, Preuss OP, Markham TN, Daniele RP. Proliferative response of bronchoalveolar lymphocytes to beryllium. A test for chronic beryllium disease. Ann Intern Med. 1988;108:687–93.

    Article  CAS  PubMed  Google Scholar 

  135. Report on base metal alloys for crown and bridge applications: benefits and risks. Council on dental materials, instruments, and equipment. J Am Dent Assoc. 1985;111:479–83.

    Google Scholar 

  136. Kielhorn J, Melber C, Keller D, Mangelsdorf I. Palladium – a review of exposure and effects to human health. Int J Hyg Environ Health. 2002;205:417–32.

    Article  CAS  PubMed  Google Scholar 

  137. Hu SW, Lin YY, Wu TC, Hong CC, Chan CC, Lung SC. Workplace air quality and lung function among dental laboratory technicians. Am J Ind Med. 2006;49:85–92.

    Article  CAS  PubMed  Google Scholar 

  138. Ayars GH, Altman LC, O’Neil CE, Butcher BT, Chi EY. Cotton dust-mediated lung epithelial injury. J Clin Invest. 1986;78:1579–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kreofsky TJ, Russell JA, Rohrbach MS. Inhibition of alveolar macrophage spreading and phagocytosis by cotton bract tannin. A potential mechanism in the pathogenesis of byssinosis. Am J Pathol. 1990;137:263–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Churg A, Myers J, Suarez T, Gaxiola M, Estrada A, Mejia M, Selman M. Airway-centered interstitial fibrosis: a distinct form of aggressive diffuse lung disease. Am J Surg Pathol. 2004;28:62–8.

    Article  PubMed  Google Scholar 

  141. Wang XR, Pan LD, Zhang HX, Sun BX, Dai HL, Christiani DC. A longitudinal observation of early pulmonary responses to cotton dust. Occup Environ Med. 2003;60:115–21.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Kern DG, Kuhn 3rd C, Ely EW, Pransky GS, Mello CJ, Fraire AE, Muller J. Flock worker’s lung: broadening the spectrum of clinicopathology, narrowing the spectrum of suspected etiologies. Chest. 2000;117:251–9.

    Article  CAS  PubMed  Google Scholar 

  143. Boag AH, Colby TV, Fraire AE, Kuhn 3rd C, Roggli VL, Travis WD, Vallyathan V. The pathology of interstitial lung disease in nylon flock workers. Am J Surg Pathol. 1999;23:1539–45.

    Article  CAS  PubMed  Google Scholar 

  144. Fraire AE, Greenberg SD, Spjut HJ, Roggli VL, Dodson RF, Cartwright J, Williams G, Baker S. Effect of fibrous glass on rat pleural mesothelium. Histopathologic observations. Am J Respir Crit Care Med. 1994;150:521–7.

    Article  CAS  PubMed  Google Scholar 

  145. Achmadi UF, Pauluhn J. Household insecticides: evaluation and assessment of inhalation toxicity: a workshop summary. Exp Toxicol Pathol. 1998;50:67–72.

    Article  CAS  PubMed  Google Scholar 

  146. Stott WT, Gollapudi BB, Rao KS. Mammalian toxicity of 1,3-dichloropropene. Rev Environ Contam Toxicol. 2001;168:1–42.

    CAS  PubMed  Google Scholar 

  147. Erdogan S, Zeren EH, Emre M, Aydin O, Gumurdulu D. Pulmonary effects of deltamethrin inhalation: an experimental study in rats. Ecotoxicol Environ Saf. 2006;63:318–23.

    Article  CAS  PubMed  Google Scholar 

  148. Sykes BI, Purchase IF, Smith LL. Pulmonary ultrastructure after oral and intravenous dosage of paraquat to rats. J Pathol. 1977;121:233–41.

    Article  CAS  PubMed  Google Scholar 

  149. Popenoe D. Effects of paraquat aerosol on mouse lung. Arch Pathol Lab Med. 1979;103:331–4.

    CAS  PubMed  Google Scholar 

  150. Barsky SH, Roth MD, Kleerup EC, Simmons M, Tashkin DP. Histopathologic and molecular alterations in bronchial epithelium in habitual smokers of marijuana, cocaine, and/or tobacco. J Natl Cancer Inst. 1998;90:1198–205.

    Article  CAS  PubMed  Google Scholar 

  151. Bailey ME, Fraire AE, Greenberg SD, Barnard J, Cagle PT. Pulmonary histopathology in cocaine abusers. Hum Pathol. 1994;25:203–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Popper, H. (2017). Pneumoconiosis and Environmentally Induced Lung Diseases. In: Pathology of Lung Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-50491-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-50491-8_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-50489-5

  • Online ISBN: 978-3-662-50491-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics