Skip to main content

In Situ Lorentz Microscopy and Electron Holography Magnetization Studies of Ferromagnetic Focused Electron Beam Induced Nanodeposits

  • Chapter
  • First Online:
Magnetic Characterization Techniques for Nanomaterials

Abstract

Quantitative Lorentz microscopy and electron holography are applied to probe the local magnetic properties of ferromagnetic nanostructures. We show here the possibilities of these techniques for the mapping of the magnetization states of nanoscale ferromagnets grown by focused electron beam induced deposition (FEBID) and for the analysis of the magnetization processes by the in situ application of magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aharonov Y, Bohm D (1959) Significance of electromagnetic potentials in the quantum theory. Phys Rev 115(3):485–491

    Article  Google Scholar 

  2. Allwood DA, Xiong G, Faulkner CC, Atkinson D, Petit D, Cowburn RP (2005) Magnetic domain-wall logic. Science 309(5741):1688–1692

    Article  Google Scholar 

  3. Bartolf H, Inderbitzin K, Gómez LB, Engel A, Schilling A (2010) Nanoscale fabrication by intrinsic suppression of proximity-electron exposures and general considerations for easy and effective top–down fabrication. J Micromech Microeng 20(12):125015

    Article  Google Scholar 

  4. Biziere N, Gatel C, Lassalle-Balier R, Clochard MC, Wegrowe JE, Snoeck E (2013) Imaging the fine structure of a magnetic domain wall in a Ni nanocylinder. Nano Lett 13(5):2053–2057

    Article  Google Scholar 

  5. Boero G, Utke I, Bret T, Quack N, Todorova M, Mouaziz S, Kejik P, Brugger J, Popovic RS, Hoffmann P (2005) Submicrometer Hall devices fabricated by focused electron-beam-induced deposition. Appl Phys Lett 86(4):042503

    Article  Google Scholar 

  6. Botman A, Mulders JJL, Hagen CW (2009) Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective. Nanotechnology 20(37):372001

    Article  Google Scholar 

  7. Brands M, Dumpich G (2005) Multiple switching fields and domain wall pinning in single Co nanowires. J Phys D Appl Phys 38(6):822–826

    Article  Google Scholar 

  8. Brands M, Leven B, Dumpich G (2005) Influence of thickness and cap layer on the switching behavior of single Co nanowires. J Appl Phys 97(11):114311

    Article  Google Scholar 

  9. Brands M, Wieser R, Hassel C, Hinzke D, Dumpich G (2006) Reversal processes and domain wall pinning in polycrystalline Co-nanowires. Phys Rev B 74:174411

    Article  Google Scholar 

  10. Cabrini S, Kawata S (eds) (2012) Nanofabrication handbook, 1st edn. CRC Press, Boca Raton, pp 1–546

    Google Scholar 

  11. Córdoba R, Fernández-Pacheco R, Fernández-Pacheco A, Gloter A, Magén C, Stéphan O, Ibarra MR, De Teresa JM (2011) Nanoscale chemical and structural study of Co-based FEBID structures by STEM-EELS and HRTEM. Nanoscale Res Lett 6(1):592

    Article  Google Scholar 

  12. De Graef M, Nuhfer N, McCartney M (1999) Phase contrast of spherical magnetic particles. J Microsc 194(1):84–94

    Article  Google Scholar 

  13. De Teresa JM, Fernández-Pacheco A (2014) Present and future applications of magnetic nanostructures grown by FEBID. Appl Phys A 117(4):1645–1658

    Article  Google Scholar 

  14. Donahue MJ, Porter DG (n.d.) http://math.nist.gov/oommf/

  15. Dumpich G, Krome TP, Hausmanns B (2002) Magnetoresistance of single Co nanowires. J Magn Magn Mater 248(2):241–247

    Article  Google Scholar 

  16. Dunin-Borkowski RE, Feuerbacher M, Heggen M, Houben L, Kovács A, Luysberg M, Thust A, Tillmann K (2012) Advanced transmission electron microscopy techniques and applications. In: Lecture notes of the 43rd IFF spring school “Scattering methods for condensed matter research: towards novel applications at future sources”. Forschungszentrum, Jülich, pp 1–28

    Google Scholar 

  17. Dyck DV (1983) High-speed computation techniques for the simulation of high resolution electron micrographs. J Microsc 132(1):31–42

    Article  Google Scholar 

  18. Dyck DV, Coene W (1987) A new procedure for wave function restoration in high resolution electron microscopy. Optik 3:125–128

    Google Scholar 

  19. Elsner H, Meyer H-G (2001) Nanometer and high aspect ratio patterning by electron beam lithography using a simple DUV negative tone resist. Microelectron Eng 57–58:291–296

    Article  Google Scholar 

  20. Fernández-Pacheco A, De Teresa JM, Córdoba R, Ibarra MR (2009) Magnetotransport properties of high-quality cobalt nanowires grown by focused-electron-beam-induced deposition. J Phys D Appl Phys 42(5):055005

    Article  Google Scholar 

  21. Fernández-Pacheco A, De Teresa JM, Córdoba R, Ibarra MR, Petit D, Read DE, O’Brien L, Lewis ER, Zeng HT, Cowburn RP (2009) Domain wall conduit behavior in cobalt nanowires grown by focused electron beam induced deposition. Appl Phys Lett 94(19):192509

    Article  Google Scholar 

  22. Fernández-Pacheco A, De Teresa JM, Szkudlarek A, Córdoba R, Ibarra MR, Petit D, O’Brien L, Zeng HT, Lewis ER, Read DE, Cowburn RP (2009) Magnetization reversal in individual cobalt micro- and nanowires grown by focused-electron-beam-induced-deposition. Nanotechnology 20(47):475704

    Article  Google Scholar 

  23. Fernández-Pacheco A, Serrano-Ramón L, Michalik JM, Ibarra MR, De Teresa JM, O’Brien L, Petit D, Lee J, Cowburn RP (2013) Three dimensional magnetic nanowires grown by focused electron-beam induced deposition. Sci Rep 3:1492

    Article  Google Scholar 

  24. Gatel C, Snoeck E (2012) Magnetic mapping using electron holography. In: Claverie A (ed) Transmission electron microscopy in micro-nanoelectronics. ISTE-Wiley, London

    Google Scholar 

  25. Gavagnin M, Wanzenboeck HD, Belić D, Bertagnolli E (2013) Synthesis of individually tuned nanomagnets for nanomagnet logic by direct write focused electron beam induced deposition. ACS Nano 7(1):777–784

    Article  Google Scholar 

  26. Gavagnin M, Wanzenboeck HD, Belic D, Shawrav MM, Persson A, Gunnarsson K, Svedlindh P, Bertagnolli E (2014) Magnetic force microscopy study of shape engineered FEBID iron nanostructures. Phys Status Solidi (a) 211(2):368–374

    Article  Google Scholar 

  27. Gavagnin M, Wanzenboeck HD, Wachter S, Shawrav MM, Persson A, Gunnarsson K, Svedlindh P, Stöger-Pollach M, Bertagnolli E (2014) Free-standing magnetic nanopillars for 3D nanomagnet logic. ACS Appl Mater Interfaces 6:20254–20260

    Article  Google Scholar 

  28. Graef MD (2001) 2. Lorentz microscopy: theoretical basis and image simulations. Exp Methods Phys Sci 36:27–67

    Article  Google Scholar 

  29. Hausmanns B, Krome TP, Dumpich G (2003) Magnetoresistance and magnetization reversal process of Co nanowires covered with Pt. J Appl Phys 93(10):8095

    Article  Google Scholar 

  30. Hawkes PW, Spence JCH (2007) In: Hawkes PW, Spence JCH (eds) Science of microscopy. Springer, New York

    Chapter  Google Scholar 

  31. Hempe E-M, Kläui M, Kasama T, Backes D, Junginger F, Krzyk S, Heyderman LJ, Dunin-Borkowski RE, Rüdiger U (2007) Domain walls, domain wall transformations and structural changes in permalloy nanowires when subjected to current pulses. Phys Status Solidi (a) 204(12):3922–3928

    Article  Google Scholar 

  32. Hopster H, Oepen HP (eds) (2005) Magnetic microscopy of nanostructures. Springer, Berlin/Heidelberg

    Google Scholar 

  33. Huth M, Porrati F, Schwalb C, Winhold M, Sachser R, Dukic M, Adams J, Fantner G (2012) Focused electron beam induced deposition: a perspective. Beilstein J Nanotechnol 3:597–619

    Article  Google Scholar 

  34. Jaafar M, Serrano-Ramón L, Iglesias-Freire O, Fernández-Pacheco A, Ibarra MR, De Teresa JM, Asenjo A (2011) Hysteresis loops of individual Co nanostripes measured by magnetic force microscopy. Nanoscale Res Lett 6(1):407

    Article  Google Scholar 

  35. Kläui M (2008) Head-to-head domain walls in magnetic nanostructures. J Phys Condens Matter 20(31):313001

    Article  Google Scholar 

  36. Kuch W (2006) Magnetic imaging. In: Beaurepaire E, Bulou H, Scheurer F, Kappler J-P (eds) Magnetism: a synchrotron radiation approach, vol 697. Springer, Berlin/Heidelberg, pp 275–320

    Chapter  Google Scholar 

  37. Lau YM, Chee PC, Thong JTL, Ng V (2002) Properties and applications of cobalt-based material produced by electron-beam-induced deposition. J Vac Sci Technol A 20(4):1295–1302

    Article  Google Scholar 

  38. Lavrijsen R, Córdoba R, Schoenaker FJ, Ellis TH, Barcones B, Kohlhepp JT, Swagten HJM, Koopmans B, De Teresa JM, Magén C, Ibarra MR, Trompenaars P, Mulders JJL (2011) Fe:O:C grown by focused-electron-beam-induced deposition: magnetic and electric properties. Nanotechnology 22(2):025302

    Article  Google Scholar 

  39. Leven B, Dumpich G (2005) Resistance behavior and magnetization reversal analysis of individual Co nanowires. Phys Rev B 71(6):064411

    Article  Google Scholar 

  40. Lichte H (1993) Parameters for high-resolution electron holography. Ultramicroscopy 51(1–4):15–20

    Article  Google Scholar 

  41. Lichte H, Lehmann M (2008) Electron holography – basics and applications. Rep Prog Phys 71(1):016102

    Article  Google Scholar 

  42. Lopez-Diaz L, Aurelio D, Torres L, Martinez E, Hernandez-Lopez MA, Gomez J, Alejos O, Carpentieri M, Finocchio G, Consolo G (2012) Micromagnetic simulations using graphics processing units. J Phys D Appl Phys 45(32):323001

    Article  Google Scholar 

  43. Lukasczyk T, Schirmer M, Steinrück H-P, Marbach H (2008) Electron-beam-induced deposition in ultrahigh vacuum: lithographic fabrication of clean iron nanostructures. Small 4(6):841–846

    Article  Google Scholar 

  44. Marín L, Rodríguez LA, Magén C, Snoeck E, Arras R, Lucas I, Morellón L, Algarabel PA, De Teresa JM, Ibarra MR (2015) Observation of the strain induced magnetic phase segregation in manganite thin films. Nano Lett 15(1):492–497

    Article  Google Scholar 

  45. McMichael RD, Donahue MJ (1997) Head to head domain wall structures in thin magnetic strips. IEEE Trans Magn 33(5):4167–4169

    Article  Google Scholar 

  46. Möllenstedt G, Düker H (1956) Beobachtungen und Messungen an Biprisma-Interferenzen mit Elektronenwellen. Z Phys 145(3):377–397

    Article  Google Scholar 

  47. Nakatani Y, Thiaville A, Miltat J (2005) Head-to-head domain walls in soft nano-strips: a refined phase diagram. J Magn Magn Mater 290–291:750–753

    Article  Google Scholar 

  48. Nuhfer N, Budruk A, De Graef M (2010) Aberration-corrected Lorentz microscopy. Microsc Microanal 16(S2):142–143

    Article  Google Scholar 

  49. Paganin D, Nugent KA (1998) Noninterferometric phase imaging with partially coherent light. Phys Rev Lett 80:2586

    Article  Google Scholar 

  50. Parkin SSP, Hayashi M, Thomas L (2008) Magnetic domain-wall racetrack memory. Science (New York, NY) 320(5873):190–194

    Article  Google Scholar 

  51. Petit D, Jausovec A-V, Read D, Cowburn RP (2008) Domain wall pinning and potential landscapes created by constrictions and protrusions in ferromagnetic nanowires. J Appl Phys 103(11):114307

    Article  Google Scholar 

  52. Phatak C, Petford-Long AK, De Graef M (2010) Three-dimensional study of the vector potential of magnetic structures. Phys Rev Lett 104:253901

    Article  Google Scholar 

  53. Porrati F, Sachser R, Walz M-M, Vollnhals F, Steinrück H-P, Marbach H, Huth M (2011) Magnetotransport properties of iron microwires fabricated by focused electron beam induced autocatalytic growth. J Phys D Appl Phys 44(42):425001

    Article  Google Scholar 

  54. Raptis I, Glezos N, Valamontes E, Zervas E, Argitis P (2001) Electron beam lithography simulation for high resolution and high-density patterns. Vacuum 62(2–3):263–271

    Article  Google Scholar 

  55. Rodríguez LA, Magén C, Snoeck E, Gatel C, Marín L, Serrano-Ramón L, Prieto JL, Muñoz M, Algarabel PA, Morellon L, De Teresa JM, Ibarra MR (2013) Quantitative in situ magnetization reversal studies in Lorentz microscopy and electron holography. Ultramicroscopy 134:144–154

    Article  Google Scholar 

  56. Rodríguez LA, Magén C, Snoeck E, Serrano-Ramón L, Gatel C, Córdoba R, Martínez-Vecino E, Torres L, De Teresa JM, Ibarra MR (2013) Optimized cobalt nanowires for domain wall manipulation imaged by in situ Lorentz microscopy. Appl Phys Lett 102(2):022418

    Article  Google Scholar 

  57. Serrano-Ramón L, Córdoba R, Rodríguez LA, Magén C, Snoeck E, Gatel C, Serrano I, Ibarra MR, De Teresa JM (2011) Ultrasmall functional ferromagnetic nanostructures grown by focused electron-beam-induced deposition. ACS Nano 5(10):7781–7787

    Article  Google Scholar 

  58. Serrano-Ramón L, Fernández-Pacheco A, Córdoba R, Magén C, Rodríguez LA, Petit D, Cowburn RP, Ibarra MR, De Teresa JM (2013) Improvement of domain wall conduit properties in cobalt nanowires by global gallium irradiation. Nanotechnology 24(34):345703

    Article  Google Scholar 

  59. Spence JCH (2003) High-resolution electron microscopy. Oxford University Press, Oxford

    Google Scholar 

  60. Tanigaki T, Takahashi Y, Shimakura T, Akashi T, Tsuneta R, Sugawara A, Shindo D (2015) Three-dimensional observation of magnetic vortex cores in stacked ferromagnetic discs. Nano Lett 15:1309–1314

    Article  Google Scholar 

  61. Tonomura A (1992) Electron-holographic interference microscopy. Adv Phys 41(1):59–103

    Article  Google Scholar 

  62. Utke I, Hoffmann P, Melngailis J (2008) Gas-assisted focused electron beam and ion beam processing and fabrication. J Vac Sci Technol: Microelectron Nanometer Struct 26(4):1197

    Article  Google Scholar 

  63. Utke I, Cicoira F, Jaenchen G, Hoffmann P, Scandella L, Dwir B, Kapon E, Laub D, Buffat P, Xanthopoulos N, Mathieu HJ (2011) Focused electron beam induced deposition of high resolution magnetic scanning probe tips. MRS Proc 706:Z9.24.1

    Google Scholar 

  64. Van Dorp WF, Hagen CW (2008) A critical literature review of focused electron beam induced deposition. J Appl Phys 104(8):081301

    Article  Google Scholar 

  65. Van Dyck D, Op de Beeck M, Coene W (1993) A new approach to object wavefunction reconstruction in electron microscopy. Optik 3:103–107

    Google Scholar 

  66. Van Tendeloo G, Van Dyck D, Pennycook SJ (eds) (2012) Handbook of nanoscopy. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  67. Volkov VV, Zhu Y, De Graef M (2002) A new symmetrized solution for phase retrieval using the transport of intensity equation. Micron 33(5):411–416

    Article  Google Scholar 

  68. Williams DB, Carter CB (2009) Transmission electron microscopy. A textbook for materials science, 2nd edn. Springer, New York, pp 1–779

    Google Scholar 

  69. Wu H, Stern LA, Xia D, Ferranti D, Thompson B, Klein KL, Gonzalez CM, Rack PD (2013) Focused helium ion beam deposited low resistivity cobalt metal lines with 10 nm resolution: implications for advanced circuit editing. J Mater Sci Mater Electron 25(2):587–595

    Article  Google Scholar 

  70. Xu P, Xia K, Gu C, Tang L, Yang H, Li J (2008) An all-metallic logic gate based on current-driven domain wall motion. Nat Nanotechnol 3(2):97–100

    Article  Google Scholar 

  71. Yao N (ed) (2007) Focused ion beam systems: basics and applications. Cambridge University Press, Cambridge

    Google Scholar 

  72. Zhu Y (2005) Magnetic phase imaging with transmission electron microscopy. In: Zhu Y (ed) Modern techniques for characterizing magnetic materials. Springer, New York, pp 267–326

    Chapter  Google Scholar 

  73. Ziese M, Semmelhack HC, Busch P (2002) Sign reversal of the magnetic anisotropy in La0.7A0.3MnO3 (A = Ca, Sr, Ba, □) films. J Magn Magn Mater 246(1–2):327–334

    Article  Google Scholar 

  74. Zonnevylle AC, Heerkens CTH, Hagen CW, Kruit P (2014) Multi-electron-beam deflector array. Microelectron Eng 123:140–148

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to César Magén or José M. De Teresa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Magén, C., Rodríguez, L.A., Serrano-Ramón, L.E., Gatel, C., Snoeck, E., De Teresa, J.M. (2017). In Situ Lorentz Microscopy and Electron Holography Magnetization Studies of Ferromagnetic Focused Electron Beam Induced Nanodeposits. In: Kumar, C. (eds) Magnetic Characterization Techniques for Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52780-1_9

Download citation

Publish with us

Policies and ethics