Skip to main content

Surfactant Self-Assembly Within Ionic-Liquid-Based Aqueous Systems

  • Chapter
  • First Online:
Ionic-Liquid-Based Aqueous Biphasic Systems

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

  • 783 Accesses

Abstract

Ionic liquids (ILs) have received increased attention from both academic and industrial research communities all over the world due to their unusual properties and immense application potential in various fields of science and technology. During the past decade, ionic-liquid-based systems have become the subject of considerable interest as a promising media for extraction and purification of several macro-/biomolecules. ILs are attractive designer solvents with tunable physicochemical properties. Using IL-based systems as alternative solvents for forming surfactant self-assemblies has several advantages. For example, the properties of surfactant self-assemblies in these media can be easily modulated by tuning the structure of ILs; ILs can dissolve a large variety of organic and inorganic substances and their properties are designable to satisfy the requirements of various applications. This may enhance the application potential of both ILs and surfactants in many important fields. Consequently, the study on surfactant self-assemblies within IL-based aqueous systems has attracted considerable attention in recent years. This chapter overviews the investigation carried out on the formation of surfactant self-assemblies within IL-based aqueous systems and their applications in various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albertson PA (1986) Partition of cell particles and macromolecules. Wiley-Interscience, New York

    Google Scholar 

  2. Zaslavsky BY (1995) Aqueous two-phase partitioning; physical chemistry and bioanalytical applications. Marcel Dekker, New York

    Google Scholar 

  3. Walter H, Brooks DE, Fisher D (1985) Partitioning in aqueous two phase system. Academic, New York

    Google Scholar 

  4. Gutowski KE, Broker GA, Willauer HD, Huddleston GJ, Swatloski RP, Holbrey JD, Rogers RD (2003) Controlling the aqueous miscibility of ionic liquids: aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. J Am Chem Soc 125:6632–6633

    Article  CAS  Google Scholar 

  5. Abraham MH, Zissimos AM, Huddleston JG, Swatloski RP, Willauer HD, Rogers RD, Acree WE Jr (2003) Some novel liquid partitioning systems: water-ionic liquids and aqueous biphasic systems. Ind EngChem Res 42:413–418

    Article  CAS  Google Scholar 

  6. Freire MG, Claudio AFM, Araujo JMM, Coutinho JAP, Marrucho IM, Canongia-Lopes JM, Rebelo LPN (2012) Aqueous biphasic systems: a boost brought about by using ionic liquids. Chem Soc Rev 41:4966–4995

    Article  CAS  Google Scholar 

  7. Shadeghi R, Golabiazar R, Shekaari H (2010) The salting-out effect and phase separation in aqueous solutions of tri-sodium citrate and 1-butyl-3-methylimidazolium bromide. J Chem Thermodyn 42:441–453

    Article  Google Scholar 

  8. Pereira JFB, Lima AS, Freire MG, Coutinho JAP (2010) Ionic liquids as adjuvants for the tailored extraction of biomolecules in aqueous biphasic systems. Green Chem 12:1661–1669

    Article  CAS  Google Scholar 

  9. Freire MG,Neves CMMSS, Carvalho PJ, Gardas RL, Fernandes AM, Marrucho IM, Santos LMNBF, Coutinho JAP (2007) Mutual solubilities of water and hydrophobic ionic liquids. J Phys Chem B111:13082–13089

    Google Scholar 

  10. Freire MG, Santos LMNBF, Fernandes AM, Coutinho JAP, Marrucho AM (2007) An overview of the mutual solubilities of water–imidazolium-based ionic liquids systems. Fluid Phase Equilib 261:449–454

    Article  CAS  Google Scholar 

  11. Welton T (1999) Room-temperature ionic liquids; solvents for synthesis and catalysis. Chem Rev 99:2071–2083

    Article  CAS  Google Scholar 

  12. Seddon KR (2003) Ionic liquids: a taste of the future. Nat Mater 2:363–365

    Article  CAS  Google Scholar 

  13. Wasserscheid P (2006) Chemistry: volatile times for ionic liquids. Nature 439:797

    Article  CAS  Google Scholar 

  14. Dupont J, de Souza RF, Suarez PAZ (2002) Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 102:3667–3692

    Article  CAS  Google Scholar 

  15. Moroi Y (1992) Micelles: theoretical and applied aspects. Springer, New York

    Book  Google Scholar 

  16. Jones MJ, Chapman D (1995) Micelles, monolayers, and biomembranes. Wiley-LISS, New York

    Google Scholar 

  17. Shah DO (1998) Micelles, microemulsions, and monolayers. CRC Press, Boca Raton

    Google Scholar 

  18. Greaves TL, Drummond CJ (2008) Ionic liquids as amphiphile self-assembly media. Chem Soc Rev 37:1709–1726

    Article  CAS  Google Scholar 

  19. Behera K, Kumar V, Pandey S (2010) Role of the surfactant structure in the behavior of hydrophobic ionic liquids within aqueous micellar solutions. ChemPhysChem 11:1044–1052

    Article  CAS  Google Scholar 

  20. Qiu Z, Texter J (2008) Ionic liquids in microemulsions. Curr Opin Colloid Interface Sci 13:252–262

    Article  CAS  Google Scholar 

  21. Hao JC, Zemb T (2007) Self-assembled structures and chemical reactions in room-temperature ionic liquids. Curr Opin Colloid Interface Sci 12:129–137

    Article  CAS  Google Scholar 

  22. Bai Z, He Y, Lodge TP (2008) Block copolymer micelle shuttles with tunable transfer temperatures between ionic liquids and aqueous solutions. Langmuir 24:5284–5290

    Article  CAS  Google Scholar 

  23. Gu Y, Shi L, Cheng X, Lu F, Zheng L (2013) Aggregation behavior of 1-dodecyl-3-methylimidazolium bromide in aqueous solution: effect of ionic liquids with aromatic anions. Langmuir 29:6213–6220

    Article  CAS  Google Scholar 

  24. Rai R, Baker GA, Behera K, Mohanty P, Kurur ND, Pandey S (2010) Ionic liquid-induced unprecedented size enhancement of aggregates within aqueous sodium dodecylbenzene sulfonate. Langmuir 26:17821–17826

    Article  CAS  Google Scholar 

  25. Bai Z, Lodge TP (2010) Polymersomes with ionic liquid interiors dispersed in water. J Am Chem Soc 132:16265–16270

    Article  CAS  Google Scholar 

  26. Ge L, Chen L, Guo R (2007) Microstructure and lubrication properties of lamellar liquid crystal in Brij30/[Bmim]PF6/H2O system. Tribol Lett 28:123–130

    Article  CAS  Google Scholar 

  27. Wang Z, Liu F, Gao Y, Zhuang W, Xu L, Han B, Li G, Zhang G (2005) Hexagonal liquid crystalline phases formed in ternary systems of Brij 97-water-ionic liquids. Langmuir 21:4931–4937

    Article  CAS  Google Scholar 

  28. Sharma SC, Atkin R, Warr GG (2013) The effect of ionic liquid hydrophobicity and solvent miscibility on pluronic amphiphile self-assembly. J Phys Chem B 117:14568–14575

    Article  CAS  Google Scholar 

  29. Binnemans K (2005) Ionic liquid crystals. Chem Rev 105:4148–4204

    Article  CAS  Google Scholar 

  30. Mehta SK, Kaur K (2010) Ionic liquid microemulsions and their technological applications. Ind J Chem 49A:662–684

    CAS  Google Scholar 

  31. Behera K, Malek NI, Pandey S (2009) Visual evidence for formation of water-in-ionic liquid microemulsions. ChemPhysChem 10:3204–3208

    Article  CAS  Google Scholar 

  32. Gao Y, Han S, Han B, Li G, Shen D, Li Z, Du J, Hou W, Zhang G (2005) TX-100/water/1-butyl-3-methylimidazolium hexafluorophosphate microemulsions. Langmuir 21:5681–5684

    Article  CAS  Google Scholar 

  33. Gao Y, Li N, Zheng L, Zhao X, Zhang S, Han B, Hou W, Li G (2006) A cyclic voltammetric technique for the detection of micro-regions of bmimPF6/Tween 20/H2O microemulsions and their performance characterization by UV-Vis spectroscopy. Green Chem 8:43–49

    Article  CAS  Google Scholar 

  34. Yan K, Sun Y, Huang X (2014) Effect of the alkyl chain length of a hydrophobic ionic liquid (IL) as an oil phase on the phase behavior and the microstructure of H2O/IL/nonionic polyoxyethylene surfactant ternary systems. RSC Adv 4:32363–32370

    Article  CAS  Google Scholar 

  35. Rai R, Pandey S (2014) Evidence of water-in-ionic liquid microemulsion formation by nonionic surfactant Brij-35. Langmuir 30:10156–10160

    Article  CAS  Google Scholar 

  36. Lian Y, Zhao K (2011) Study of micelles and microemulsions formed in a hydrophobic ionic liquid by a dielectric spectroscopy method. I. Interaction and percolation. Soft Matter 7:8828–8837

    Article  CAS  Google Scholar 

  37. Anjum N, Guedeau-Boudeville M-A, Stubenrauch C, Mourchid A (2009) Phase behavior and microstructure of microemulsions containing the hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J Phys Chem B 113:239–244

    Article  CAS  Google Scholar 

  38. Misono T, Aburai K, Endo T, Sakai K, Abe M, Sakai H (2009) Effect of water on interfacial chemical properties of nonionic surfactants in hydrophobic ionic liquid bmimPF6. J Phys Chem B 113:239–244

    Article  Google Scholar 

  39. Kusano T, Fujii K, Hashimoto K, Shibayama M (2014) Water-in-ionic liquid microemulsion formation in solvent mixture of aprotic and protic imidazolium-based ionic liquids. Langmuir 30:11890–11896

    Article  CAS  Google Scholar 

  40. Moniruzzaman M, Kamiya N, Nakashima K, Goto M (2008) Formation of reverse micelles in a room-temperature ionic liquid. ChemPhysChem 9:689–692

    Article  CAS  Google Scholar 

  41. Rai R, PandeySh BSN, Vora S, Behera K, Baker GA, Pandey S (2012) Ethanol-assisted, few nanometer, water-in-ionic-liquid reverse micelle formation by a zwitterionic surfactant. Chem Eur J 18:12213–12217

    Article  CAS  Google Scholar 

  42. Safavi A, Maleki N, Farjami F (2010) Phase behavior and characterization of ionic liquids based microemulsions. Colloids Surf A 355:61–66

    Article  CAS  Google Scholar 

  43. Sun Y, Yan K, Huang S (2014) Formation, characterization and enzyme activity in water-in-hydrophobic ionic liquid microemulsion stabilized by mixed cationic/nonionic surfactants. Colloids Surf B 122:66–71

    Article  CAS  Google Scholar 

  44. Mao Q-X, Wang H, Shu Y, Chen X-W, Wang J-H (2014) A dual-ionic liquid microemulsion system for the selective isolation of haemoglobin. RSC Adv 4:8177–8182

    Article  CAS  Google Scholar 

  45. Xue L, Qiu H, Li Y, Lu L, Huang X, Qu Y (2011) A novel water-in-ionic liquid microemulsion and its interfacial effect on the activity of laccase. Colloids Surf B 82:432–437

    Article  CAS  Google Scholar 

  46. Mojumdar SS, Mondal T, Das AK, Dey S, Bhattacharyya K (2010) Ultrafast and ultraslow proton transfer of pyranine in an ionic liquid microemulsion. J Chem Phy 132:194505–194513

    Article  Google Scholar 

  47. Wu H, Wang H, Xue L, Li X (2011) Photoinduced electron and energy transfer from coumarin 153 to perylenetetracarboxylic diimide in bmimPF6/TX-100/water microemulsions. J Colloid Interface Sci 353:476–481

    Article  CAS  Google Scholar 

  48. Jarzqba W, Walker GC, Johnson AE, Kahlow MA, Barbara PF (1988) Femtosecond microscopic solvation dynamics of aqueous solutions. J Phys Chem 92:7039–7041

    Article  Google Scholar 

  49. Kobrak MN, Znamenskiy V (2004) Solvation dynamics of room-temperature ionic liquids: evidence for collective solvent motion on sub-picosecond timescales. Chem Phys Lett 395:127–132

    Article  CAS  Google Scholar 

  50. Adhikari A, Sahu K, Dey S, Ghosh S, Mandal U, Bhattacharyya K (2007) Femtosecond solvation dynamics in a neat ionic liquid and ionic liquid microemulsion: excitation wavelength dependence. J Phys Chem B 111:12809–12816

    Article  CAS  Google Scholar 

  51. Seth D, Chakraborty A, Setua P, Sarkar N (2006) Interaction of ionic liquid with water in ternary microemulsions (Triton X-100/water/1-butyl-3-methylimidazolium hexafluorophosphate) probed by solvent and rotational relaxation of coumarin 153 and coumarin 151. Langmuir 22:7768–7775

    Article  CAS  Google Scholar 

  52. Seth D, Chakraborty A, Setua P, Sarkar N (2007) Interaction of ionic liquid with water with variation of water content in 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6])/TX-100/water ternary microemulsions monitored by solvent and rotational relaxation of coumarin 153 and coumarin 490. J Chem Phys 126:224512–224524

    Google Scholar 

  53. Seth D, Setua P, Chakraborty A, Sarkar N (2007) Solvent relaxation of a room-temperature ionic liquid [bmim][PF6] confined in a ternary microemulsion. J Chem Sci 119:105–111

    Article  CAS  Google Scholar 

  54. Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 44:7852–7872

    Article  CAS  Google Scholar 

  55. Wang F, Banerjee D, Liu Y, Chen X, Liu X (2010) Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 135:1839–1854

    Article  CAS  Google Scholar 

  56. Serrà A, Gómez E, Calderó G, Esquena J, Solans C, Vallés E (2013) Microemulsions for obtaining nanostructures by means electrodeposition method. Electrochem Commun 27:14–18

    Article  Google Scholar 

  57. Serrá A, Gómez E, López-Barbera JF, Nogués J, Vallés E (2014) Green electrochemical template synthesis of CoPt nanoparticles with tunable size, composition, and magnetism from microemulsions using an ionic liquid (bmimPF6). ACS Nano 8:4630–4639

    Article  Google Scholar 

  58. Zhang G, Zhou H, Hu J, Liua M, Kuang Y (2009) Pd nanoparticles catalyzed ligand-free Heck reaction in ionic liquid microemulsion. Green Chem 11:1428–1432

    Article  CAS  Google Scholar 

  59. Fu C, Zhou H, Xie D, Sun L, Yin Y, Chen J, Kuang Y (2010) Electrodeposition of gold nanoparticles from ionic liquid microemulsion. Colloid Polym Sci 288:1097–1103

    Article  CAS  Google Scholar 

  60. Serrà A, Gómez E, Vallés E (2014) Electrosynthesis method of CoPt nanoparticles in percolated microemulsions. RSC Adv 4:34281–34287

    Article  Google Scholar 

  61. Serrà A, Montiel M, Gómez E, Vallés E (2014) Electrochemical synthesis of mesoporous CoPt nanowires for methanol oxidation. Nanomaterials 4:189–202

    Article  Google Scholar 

  62. Guo Y, He D, Xia S, Xie X, Gao X, Zhang Q (2012) Preparation of a novel nanocomposite of polyaniline core decorated with anatase-TiO2 nanoparticles in ionic liquid/water microemulsion. J Nanomat 2012:1–7

    Article  Google Scholar 

  63. Li Z, Zhang J, Du J, Han B, Wang J (2006) Preparation of silica microrods with nano-sized pores in ionic liquid microemulsions. Colloids surf A 286:117–120

    Article  CAS  Google Scholar 

  64. Li F, Yang F-Q, Xia Z-N (2013) Simultaneous determination of ten nucleosides and related compounds by MEEKC with [BMIM]PF6 as oil phase. Chromatographia 76:1003–1011

    Article  CAS  Google Scholar 

  65. Li F, Liu R, Yang F, Xiao W, Chen C, Xia Z (2014) Determination of three curcuminoids in Curcuma longa by microemulsion electrokinetic chromatography with protective effects on the analytes. Anal Methods 6:2566

    Article  CAS  Google Scholar 

  66. Wang Y, Li F, Yang F-Q, Zuo H-L, Xia Z-N (2010) Simultaneous determination of α-, β- and γ-asarone in Acorus tatarinowii by microemulsion electrokinetic chromatography with [BMIM]PF6 as oil phase. Talanta 101:510–515

    Article  Google Scholar 

  67. Shu Y, Cheng D, Chen X, Wang J (2008) A reverse microemulsion of water/AOT/1-butyl-3-methylimidazolium hexafluorophosphate for selective extraction of hemoglobin. Sep Purif Technol 64:154–159

    Article  CAS  Google Scholar 

  68. Biasutti MA, Abuin EB, Silber JJ, Correa NM, Lissi EA (2008) Kinetics of reactions catalyzed by enzymes in solutions of surfactants. Adv Colloid Interface Sci 136:1–24

    Article  CAS  Google Scholar 

  69. Xue L, Zhao Y, Yu L, Sun Y, Yan K, Li Y, Huang X, Qu Y (2013) Choline acetate enhanced the catalytic performance of Candida rugosa lipase in AOT reverse micelles. Colloids Surf B 105:81–86

    Article  CAS  Google Scholar 

  70. Moniruzzaman M, Kamiya N, Goto M (2009) Biocatalysis in water-in-ionic liquid microemulsions: a case study with horseradish peroxidase. Langmuir 25:977–982

    Article  CAS  Google Scholar 

  71. Skotheim TA, Elsenbaumer RL, Reynolds JR (1998) Handbook of conducting polymers, 2nd edn. Marcel Dekker, New York/Basel/HongKong

    Google Scholar 

  72. Dong B, Zhang S, Zheng L, Xu J (2008) Ionic liquid microemulsions: a new medium for electropolymerization. J Electroanal Chem 619:193–196

    Article  Google Scholar 

  73. Dong B, Xu J, Zheng L, Hou J (2009) Electrodeposition of conductive poly(3-methoxythiophene) in ionic liquid microemulsions. J Electranal Chem 628:60–66

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Siddharth Pandey thanks the Department of Science and Technology (DST), Government of India (grant number SB/S1/PC-80/2012), and the Council of Scientific and Industrial Research (CSIR), Government of India [grant no. 01(2767)/13/EMR-II], for generously supporting his work on surfactant self-assembly in aqueous-ionic-liquid systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddharth Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Behera, K., Rai, R., Trivedi, S., Pandey, S. (2016). Surfactant Self-Assembly Within Ionic-Liquid-Based Aqueous Systems. In: Freire, M. (eds) Ionic-Liquid-Based Aqueous Biphasic Systems. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52875-4_10

Download citation

Publish with us

Policies and ethics