Skip to main content

Causality in Bounded Petri Nets is MSO Definable

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9803))

  • 595 Accesses

Abstract

In this work we show that the causal behaviour of any bounded Petri net is definable in monadic second order (MSO) logic. Our proof relies in a definability vs recognizability result for DAGs whose edges and vertices can be covered by a constant number of paths. Our notion of recognizability is defined in terms of saturated slice automata, a formalism for the specification of infinite families of graphs. We show that a family \(\mathfrak {G}\) of k-coverable DAGs is recognizable by a saturated slice automaton if and only if \(\mathfrak {G}\) is definable in monadic second order logic. This result generalizes Büchi’s theorem from the context of strings, to the context of k-coverable DAGs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Proposals of proofs of Courcelle’s conjecture for graphs of constant pathwidth and constant treewidth have been provided in [20] and [23] respectively. Nevertheless, both proposed proofs contained substantial gaps, and Courcelle’s conjecture is regarded to be open in both cases [8].

References

  1. Bauderon, M., Courcelle, B.: Graph expressions and graph rewritings. Math. Syst. Theor. 20(2–3), 83–127 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bodlaender, H.L., Heggernes, P., Telle, J.A.: Recognizability equals definability for graphs of bounded treewidth and bounded chordality. In: Proceedings of the 7th European Conference on Combinatorics (EUROCOMB 2015) (2015)

    Google Scholar 

  3. Brandenburg, F.-J., Skodinis, K.: Finite graph automata for linear and boundary graph languages. Theor. Comput. Sci. 332(1–3), 199–232 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruggink, H.S., König, B.: On the recognizability of arrow and graph languages. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Büchi, J.R.: Weak second order arithmetic and finite automata. Z. Math. Logik Grundl. Math. 6, 66–92 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  6. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Courcelle, B.: The monadic second-order logic of graphs V: on closing the gap between definability and recognizability. Theor. Comput. Sci. 80(2), 153–202 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach, vol. 138. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  9. de Oliveira Oliveira, M.: Hasse diagram generators and Petri nets. Fundamenta Informaticae 105(3), 263–289 (2010)

    MathSciNet  MATH  Google Scholar 

  10. de Oliveira Oliveira, M.: Canonizable partial order generators. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 445–457. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. de Oliveira Oliveira, M.: Subgraphs satisfying MSO properties on z-topologically orderable digraphs. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 123–136. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. de Oliveira Oliveira, M.: MSO logic and the partial order semantics of place/transition-nets. In: Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC 2015. LNCS, vol. 9399, pp. 368–387. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25150-9_22

    Chapter  Google Scholar 

  13. Engelfriet, J., Vereijken, J.J.: Context-free graph grammars and concatenation of graphs. Acta Informatica 34(10), 773–803 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gaifman, H., Pratt, V.R.: Partial order models of concurrency and the computation of functions. In: LICS 1987, pp. 72–85 (1987)

    Google Scholar 

  15. Gischer, J.L.: The equational theory of pomsets. Theor. Comput. Sci. 61, 199–224 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Goltz, U., Reisig, W.: Processes of place/transition-nets. In: Díaz, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 264–277. Springer, Heidelberg (1983)

    Chapter  Google Scholar 

  17. Jaffke, L., Bodlaender, H.L.: Definability equals recognizability for k-outerplanar graphs. In: Proceedings of the 10th International Symposium on Parameterized and Exact Computation, (IPEC 2015). LIPIcs, vol. 43, pp. 175–186 (2015)

    Google Scholar 

  18. Jaffke, L., Bodlaender, H.L.: MSOL-definability equals recognizability for Halin graphs and bounded degree \(k\)-outerplanar graphs (2015). Preprint arXiv:1503.01604

  19. Jagadeesan, L.J., Jagadeesan, R.: Causality and true concurrency: a data-flow analysis of the pi-calculus. In: Alagar, V.S., Nivat, M. (eds.) AMAST 1995. LNCS, vol. 936, pp. 277–291. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  20. Kabanets, V.: Recognizability equals definability for partial \(k\)-paths. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 805–815. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  21. Kaller, D.: Definability equals recognizability of partial 3-trees and \(k\)-connected partial \(k\)-trees. Algorithmica 27(3–4), 348–381 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Langerak, R., Brinksma, E., Katoen, J.-P.: Causal ambiguity and partial orders in event structures. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 317–331. Springer, Heidelberg (1997)

    Google Scholar 

  23. Lapoire, D.: Recognizability equals monadic second-order definability for sets of graphs of bounded tree-width. In: Morvan, M., Meinel, C., Krob, D. (eds.) STACS 1998. LNCS, vol. 1373, pp. 618–628. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  24. Petri, C.A.: Fundamentals of a theory of asynchronous information flow. In: Proceedings of IFIP Congress 62, Munchen, pp. 166–168 (1962)

    Google Scholar 

  25. Thomas, W.: Finite-state recognizability of graph properties. Theorie des Automates et Applications 172, 147–159 (1992)

    Google Scholar 

  26. Vogler, W. (ed.): Modular Construction and Partial Order Semantics of Petri Nets. LNCS, vol. 625. Springer, Heidelberg (1992)

    MATH  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges financial support from the European Research Council, ERC grant agreement 339691, within the context of the project Feasibility, Logic and Randomness (FEALORA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateus de Oliveira Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Oliveira Oliveira, M. (2016). Causality in Bounded Petri Nets is MSO Definable. In: Väänänen, J., Hirvonen, Å., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2016. Lecture Notes in Computer Science(), vol 9803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52921-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52921-8_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52920-1

  • Online ISBN: 978-3-662-52921-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics