Skip to main content

Ciliopathies: Their Role in Pediatric Renal Disease

  • Chapter
  • First Online:
Pediatric Kidney Disease
  • 2682 Accesses

Abstract

Cilia are evolutionarily extremely well conserved, microtubule based structures. Over the past two decades, their essential role during development and for tissue homeostasis, especially for the mammalian kidney, has come to light and with the development of Next Generation Sequencing techniques, an ever increasing number of ciliary genes has been identified as causative for human hereditary renal diseases. Most of these conditions manifest themselves at birth, in childhood or during adolescence and the vast majority causes complex phenotypes affecting multiple organ systems. While cilia and ciliary dysfunction have been linked to multiple cellular signalling pathways, the molecular pathomechanism underlying renal ciliopathies is still poorly understood. This chapter will focus on what is known to date about ciliary structure and their involvement in cell signalling pathways, summarize ciliopathies with renal involvement, especially conditions resulting from dysfunction of Intraflagellar Transport (IFT) and discuss their underlying pathobiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Halbritter J, Bizet AA, Schmidts M, Porath JD, Braun DA, Gee HY, et al. Defects in the IFT-B component IFT172 cause Jeune and Mainzer-Saldino syndromes in humans. Am J Hum Genet. 2013;93(5):915–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Westhoff JH, Giselbrecht S, Schmidts M, Schindler S, Beales PL, Tonshoff B, et al. Development of an automated imaging pipeline for the analysis of the zebrafish larval kidney. PLoS ONE. 2013;8(12):e82137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Wheatley DN. Landmarks in the first hundred years of primary (9 + 0) cilium research. Cell Biol Int. 2005;29(5):333–9.

    Article  CAS  PubMed  Google Scholar 

  4. G PJaV. De phaenomeno generali et fundamentali motus vibratorii continui in membranis cum externis tum internis animalium plurimorum et superiorum et inferiorum ordinum obvii. In: A S, editor. Commentatio Physiologica. Wratislaviae1835.

    Google Scholar 

  5. Afzelius BA. The immotile-cilia syndrome and other ciliary diseases. Int Rev Exp Pathol. 1979;19:1–43.

    CAS  PubMed  Google Scholar 

  6. Murcia NS, Richards WG, Yoder BK, Mucenski ML, Dunlap JR, Woychik RP. The Oak Ridge Polycystic Kidney (orpk) disease gene is required for left-right axis determination. Development. 2000;127(11):2347–55.

    CAS  PubMed  Google Scholar 

  7. Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB, et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol. 2000;151(3):709–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fliegauf M, Benzing T, Omran H. When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol. 2007;8(11):880–93.

    Article  CAS  PubMed  Google Scholar 

  9. Baker K, Beales PL. Making sense of cilia in disease: the human ciliopathies. Am J Med Genet C: Semin Med Genet. 2009;151C(4):281–95.

    Article  CAS  Google Scholar 

  10. Hildebrandt F, Benzing T, Katsanis N. Ciliopathies. N Engl J Med. 2011;364(16):1533–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gilula NB, Satir P. The ciliary necklace. A ciliary membrane specialization. J Cell Biol. 1972;53(2):494–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fliegauf M, Horvath J, von Schnakenburg C, Olbrich H, Muller D, Thumfart J, et al. Nephrocystin specifically localizes to the transition zone of renal and respiratory cilia and photoreceptor connecting cilia. J Am Soc Nephrol. 2006;17(9):2424–33.

    Article  CAS  PubMed  Google Scholar 

  13. Shiba D, Yamaoka Y, Hagiwara H, Takamatsu T, Hamada H, Yokoyama T. Localization of Inv in a distinctive intraciliary compartment requires the C-terminal ninein-homolog-containing region. J Cell Sci. 2009;122(Pt 1):44–54.

    Article  CAS  PubMed  Google Scholar 

  14. Wheatley DN. Cilia and centrioles of the rat adrenal cortex. J Anat. 1967;101(Pt 2):223–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wheatley DN. Primary cilia in normal and pathological tissues. Pathobiology. 1995;63(4):222–38.

    Article  CAS  PubMed  Google Scholar 

  16. Goetz SC, Ocbina PJ, Anderson KV. The primary cilium as a Hedgehog signal transduction machine. Methods Cell Biol. 2009;94:199–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huangfu D, Liu A, Rakeman AS, Murcia NS, Niswander L, Anderson KV. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature. 2003;426(6962):83–7.

    Article  CAS  PubMed  Google Scholar 

  18. Ruiz-Perez VL, Blair HJ, Rodriguez-Andres ME, Blanco MJ, Wilson A, Liu YN, et al. Evc is a positive mediator of Ihh-regulated bone growth that localises at the base of chondrocyte cilia. Development. 2007;134(16):2903–12.

    Article  CAS  PubMed  Google Scholar 

  19. Quinlan RJ, Tobin JL, Beales PL. Modeling ciliopathies: primary cilia in development and disease. Curr Top Dev Biol. 2008;84:249–310.

    Article  CAS  PubMed  Google Scholar 

  20. Schmidts M, Frank V, Eisenberger T, Al Turki S, Bizet AA, Antony D, et al. Combined NGS approaches identify mutations in the intraflagellar transport gene IFT140 in skeletal ciliopathies with early progressive kidney disease. Hum Mutat. 2013;34(5):714–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schmidts M, Arts HH, Bongers EM, Yap Z, Oud MM, Antony D, et al. Exome sequencing identifies DYNC2H1 mutations as a common cause of asphyxiating thoracic dystrophy (Jeune syndrome) without major polydactyly, renal or retinal involvement. J Med Genet. 2013;50(5):309–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Williams CL, Li C, Kida K, Inglis PN, Mohan S, Semenec L, et al. MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. J Cell Biol. 2011;192(6):1023–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reiter JF, Blacque OE, Leroux MR. The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep. 2012;13(7):608–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rohatgi R, Snell WJ. The ciliary membrane. Curr Opin Cell Biol. 2010;22(4):541–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rosenbaum J. Intraflagellar transport. Curr Biol. 2002;12(4):R125.

    Article  CAS  PubMed  Google Scholar 

  26. Nachury MV, Loktev AV, Zhang Q, Westlake CJ, Peranen J, Merdes A, et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell. 2007;129(6):1201–13.

    Article  CAS  PubMed  Google Scholar 

  27. Jin H, White SR, Shida T, Schulz S, Aguiar M, Gygi SP, et al. The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell. 2010;141(7):1208–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Poole CA, Flint MH, Beaumont BW. Analysis of the morphology and function of primary cilia in connective tissues: a cellular cybernetic probe? Cell Motil. 1985;5(3):175–93.

    Article  CAS  PubMed  Google Scholar 

  29. Sorokin S. Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J Cell Biol. 1962;15:363–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rattner JB, Sciore P, Ou Y, van der Hoorn FA, Lo IK. Primary cilia in fibroblast-like type B synoviocytes lie within a cilium pit: a site of endocytosis. Histol Histopathol. 2010;25(7):865–75.

    PubMed  Google Scholar 

  31. Ghossoub R, Molla-Herman A, Bastin P, Benmerah A. The ciliary pocket: a once-forgotten membrane domain at the base of cilia. Biol Cell. 2011;103(3):131–44.

    Article  PubMed  Google Scholar 

  32. Avasthi P, Marshall WF. Stages of ciliogenesis and regulation of ciliary length. Differentiation. 2012;83(2):S30–42.

    Article  CAS  PubMed  Google Scholar 

  33. Schmidt KN, Kuhns S, Neuner A, Hub B, Zentgraf H, Pereira G. Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis. J Cell Biol. 2012;199(7):1083–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chaki M, Airik R, Ghosh AK, Giles RH, Chen R, Slaats GG, et al. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell. 2012;150(3):533–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim S, Dynlacht BD. Assembling a primary cilium. Curr Opin Cell Biol. 2013;25(4):506–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shida T, Cueva JG, Xu Z, Goodman MB, Nachury MV. The major alpha-tubulin K40 acetyltransferase alphaTAT1 promotes rapid ciliogenesis and efficient mechanosensation. Proc Natl Acad Sci U S A. 2010;107(50):21517–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kalebic N, Sorrentino S, Perlas E, Bolasco G, Martinez C, Heppenstall PA. alphaTAT1 is the major alpha-tubulin acetyltransferase in mice. Nat Commun. 2013;4:1962.

    Article  PubMed  CAS  Google Scholar 

  38. O’Hagan R, Barr MM. Regulation of tubulin glutamylation plays cell-specific roles in the function and stability of sensory cilia. Worm. 2012;1(3):155–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pathak N, Obara T, Mangos S, Liu Y, Drummond IA. The zebrafish fleer gene encodes an essential regulator of cilia tubulin polyglutamylation. Mol Biol Cell. 2007;18(11):4353–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thomas S, Wright KJ, Le Corre S, Micalizzi A, Romani M, Abhyankar A, et al. A homozygous PDE6D mutation in Joubert syndrome impairs targeting of farnesylated INPP5E protein to the primary cilium. Hum Mutat. 2014;35(1):137–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Paridaen JT, Wilsch-Brauninger M, Huttner WB. Asymmetric inheritance of centrosome-associated primary cilium membrane directs ciliogenesis after cell division. Cell. 2013;155(2):333–44.

    Article  CAS  PubMed  Google Scholar 

  42. Wang G, Chen Q, Zhang X, Zhang B, Zhuo X, Liu J, et al. PCM1 recruits Plk1 to the pericentriolar matrix to promote primary cilia disassembly before mitotic entry. J Cell Sci. 2013;126(Pt 6):1355–65.

    Article  CAS  PubMed  Google Scholar 

  43. Norris DP, Grimes DT. Mouse models of ciliopathies: the state of the art. Dis Model Mech. 2012;5(3):299–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Delaval B, Bright A, Lawson ND, Doxsey S. The cilia protein IFT88 is required for spindle orientation in mitosis. Nat Cell Biol. 2011;13(4):461–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pan J, Seeger-Nukpezah T, Golemis EA. The role of the cilium in normal and abnormal cell cycles: emphasis on renal cystic pathologies. Cell Mol Life Sci. 2013;70(11):1849–74.

    Article  CAS  PubMed  Google Scholar 

  46. Bielas SL, Silhavy JL, Brancati F, Kisseleva MV, Al-Gazali L, Sztriha L, et al. Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nat Genet. 2009;41(9):1032–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jacoby M, Cox JJ, Gayral S, Hampshire DJ, Ayub M, Blockmans M, et al. INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse. Nat Genet. 2009;41(9):1027–31.

    Article  CAS  PubMed  Google Scholar 

  48. Xu J, Li H, Wang B, Xu Y, Yang J, Zhang X, et al. VHL inactivation induces HEF1 and Aurora kinase A. J Am Soc Nephrol. 2010;21(12):2041–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Choi HJ, Lin JR, Vannier JB, Slaats GG, Kile AC, Paulsen RD, et al. NEK8 links the ATR-regulated replication stress response and S phase CDK activity to renal ciliopathies. Mol Cell. 2013;51(4):423–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kozminski KG, Johnson KA, Forscher P, Rosenbaum JL. A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci U S A. 1993;90(12):5519–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cole DG, Diener DR, Himelblau AL, Beech PL, Fuster JC, Rosenbaum JL. Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol. 1998;141(4):993–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pazour GJ, Rosenbaum JL. Intraflagellar transport and cilia-dependent diseases. Trends Cell Biol. 2002;12(12):551–5.

    Article  CAS  PubMed  Google Scholar 

  53. Cole DG, Snell WJ. SnapShot: intraflagellar transport. Cell. 2009;137(4):784–e1.

    Article  CAS  PubMed  Google Scholar 

  54. Lin F, Hiesberger T, Cordes K, Sinclair AM, Goldstein LS, Somlo S, et al. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc Natl Acad Sci U S A. 2003;100(9):5286–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jonassen JA, SanAgustin J, Baker SP, Pazour GJ. Disruption of IFT complex A causes cystic kidneys without mitotic spindle misorientation. J Am Soc Nephrol. 2012;23(4):641–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dagoneau N, Goulet M, Genevieve D, Sznajer Y, Martinovic J, Smithson S, et al. DYNC2H1 mutations cause asphyxiating thoracic dystrophy and short rib-polydactyly syndrome, type III. Am J Hum Genet. 2009;84(5):706–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Beales PL, Bland E, Tobin JL, Bacchelli C, Tuysuz B, Hill J, et al. IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy. Nat Genet. 2007;39(6):727–9.

    Article  CAS  PubMed  Google Scholar 

  58. Merrill AE, Merriman B, Farrington-Rock C, Camacho N, Sebald ET, Funari VA, et al. Ciliary abnormalities due to defects in the retrograde transport protein DYNC2H1 in short-rib polydactyly syndrome. Am J Hum Genet. 2009;84(4):542–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Baujat G, Huber C, El Hokayem J, Caumes R, Do Ngoc Thanh C, David A, et al. Asphyxiating thoracic dysplasia: clinical and molecular review of 39 families. J Med Genet. 2013;50(2):91–8.

    Article  CAS  PubMed  Google Scholar 

  60. McInerney-Leo AM, Schmidts M, Cortes CR, Leo PJ, Gener B, Courtney AD, et al. Short-rib polydactyly and Jeune syndromes are caused by mutations in WDR60. Am J Hum Genet. 2013;93(3):515–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schmidts M, Vodopiutz J, Christou-Savina S, Cortes CR, McInerney-Leo AM, Emes RD, et al. Mutations in the gene encoding IFT dynein complex component WDR34 cause Jeune asphyxiating thoracic dystrophy. Am J Hum Genet. 2013;93(5):932–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Huber C, Wu S, Kim AS, Sigaudy S, Sarukhanov A, Serre V, et al. WDR34 mutations that cause short-rib polydactyly syndrome type III/severe asphyxiating thoracic dysplasia reveal a role for the NF-kappaB pathway in cilia. Am J Hum Genet. 2013;93(5):926–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Walczak-Sztulpa J, Eggenschwiler J, Osborn D, Brown DA, Emma F, Klingenberg C, et al. Cranioectodermal Dysplasia, Sensenbrenner syndrome, is a ciliopathy caused by mutations in the IFT122 gene. Am J Hum Genet. 2010;86(6):949–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bredrup C, Saunier S, Oud MM, Fiskerstrand T, Hoischen A, Brackman D, et al. Ciliopathies with skeletal anomalies and renal insufficiency due to mutations in the IFT-A gene WDR19. Am J Hum Genet. 2011;89(5):634–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gilissen C, Arts HH, Hoischen A, Spruijt L, Mans DA, Arts P, et al. Exome sequencing identifies WDR35 variants involved in Sensenbrenner syndrome. Am J Hum Genet. 2010;87(3):418–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mill P, Lockhart PJ, Fitzpatrick E, Mountford HS, Hall EA, Reijns MA, et al. Human and mouse mutations in WDR35 cause short-rib polydactyly syndromes due to abnormal ciliogenesis. Am J Hum Genet. 2011;88(4):508–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Arts HH, Bongers EM, Mans DA, van Beersum SE, Oud MM, Bolat E, et al. C14ORF179 encoding IFT43 is mutated in Sensenbrenner syndrome. J Med Genet. 2011;48(6):390–5.

    Article  CAS  PubMed  Google Scholar 

  68. Davis EE, Zhang Q, Liu Q, Diplas BH, Davey LM, Hartley J, et al. TTC21B contributes both causal and modifying alleles across the ciliopathy spectrum. Nat Genet. 2011;43(3):189–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Perrault I, Saunier S, Hanein S, Filhol E, Bizet AA, Collins F, et al. Mainzer-Saldino syndrome is a ciliopathy caused by IFT140 mutations. Am J Hum Genet. 2012;90(5):864–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Aldahmesh MA, Li Y, Alhashem A, Anazi S, Alkuraya H, Hashem M, et al. IFT27, encoding a small GTPase component of IFT particles, is mutated in a consanguineous family with Bardet-Biedl syndrome. Hum Mol Genet. 2014;23(12):3307–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Eggenschwiler JT, Anderson KV. Cilia and developmental signaling. Annu Rev Cell Dev Biol. 2007;23:345–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Goetz SC, Anderson KV. The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet. 2010;11(5):331–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Huangfu D, Anderson KV. Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci U S A. 2005;102(32):11325–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kronenberg HM. Developmental regulation of the growth plate. Nature. 2003;423(6937):332–6.

    Article  CAS  PubMed  Google Scholar 

  75. Ocbina PJ, Eggenschwiler JT, Moskowitz I, Anderson KV. Complex interactions between genes controlling trafficking in primary cilia. Nat Genet. 2011;43(6):547–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rix S, Calmont A, Scambler PJ, Beales PL. An Ift80 mouse model of short rib polydactyly syndromes shows defects in hedgehog signalling without loss or malformation of cilia. Hum Mol Genet. 2011;20(7):1306–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ashe A, Butterfield NC, Town L, Courtney AD, Cooper AN, Ferguson C, et al. Mutations in mouse Ift144 model the craniofacial, limb and rib defects in skeletal ciliopathies. Hum Mol Genet. 2012;21(8):1808–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hu MC, Mo R, Bhella S, Wilson CW, Chuang PT, Hui CC, et al. GLI3-dependent transcriptional repression of Gli1, Gli2 and kidney patterning genes disrupts renal morphogenesis. Development. 2006;133(3):569–78.

    Article  CAS  PubMed  Google Scholar 

  79. Kelley RI, Hennekam RC. The Smith-Lemli-Opitz syndrome. J Med Genet. 2000;37(5):321–35 [Review].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Friedland-Little JM, Hoffmann AD, Ocbina PJ, Peterson MA, Bosman JD, Chen Y, et al. A novel murine allele of intraflagellar transport protein 172 causes a syndrome including VACTERL-like features with hydrocephalus. Hum Mol Genet. 2011;20(19):3725–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wallingford JB, Mitchell B. Strange as it may seem: the many links between Wnt signaling, planar cell polarity, and cilia. Genes Dev. 2011;25(3):201–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. van Amerongen R, Nusse R. Towards an integrated view of Wnt signaling in development. Development. 2009;136(19):3205–14.

    Article  PubMed  CAS  Google Scholar 

  83. Vladar EK, Antic D, Axelrod JD. Planar cell polarity signaling: the developing cell’s compass. Cold Spring Harb Perspect Biol. 2009;1(3):a002964.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ross AJ, May-Simera H, Eichers ER, Kai M, Hill J, Jagger DJ, et al. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat Genet. 2005;37(10):1135–40.

    Article  CAS  PubMed  Google Scholar 

  85. Simons M, Gloy J, Ganner A, Bullerkotte A, Bashkurov M, Kronig C, et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat Genet. 2005;37(5):537–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gerdes JM, Liu Y, Zaghloul NA, Leitch CC, Lawson SS, Kato M, et al. Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response. Nat Genet. 2007;39(11):1350–60.

    Article  CAS  PubMed  Google Scholar 

  87. Corbit KC, Shyer AE, Dowdle WE, Gaulden J, Singla V, Chen MH, et al. Kif3a constrains beta-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat Cell Biol. 2008;10(1):70–6.

    Article  CAS  PubMed  Google Scholar 

  88. Jonassen JA, San Agustin J, Follit JA, Pazour GJ. Deletion of IFT20 in the mouse kidney causes misorientation of the mitotic spindle and cystic kidney disease. J Cell Biol. 2008;183(3):377–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ocbina PJ, Tuson M, Anderson KV. Primary cilia are not required for normal canonical Wnt signaling in the mouse embryo. PLoS ONE. 2009;4(8):e6839.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Huang P, Schier AF. Dampened Hedgehog signaling but normal Wnt signaling in zebrafish without cilia. Development. 2009;136(18):3089–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jones C, Roper VC, Foucher I, Qian D, Banizs B, Petit C, et al. Ciliary proteins link basal body polarization to planar cell polarity regulation. Nat Genet. 2008;40(1):69–77.

    Article  CAS  PubMed  Google Scholar 

  92. Karner CM, Chirumamilla R, Aoki S, Igarashi P, Wallingford JB, Carroll TJ. Wnt9b signaling regulates planar cell polarity and kidney tubule morphogenesis. Nat Genet. 2009;41(7):793–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kotsis F, Boehlke C, Kuehn EW. The ciliary flow sensor and polycystic kidney disease. Nephrol Dial Transplant. 2013;28(3):518–26.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Patel V, Li L, Cobo-Stark P, Shao X, Somlo S, Lin F, et al. Acute kidney injury and aberrant planar cell polarity induce cyst formation in mice lacking renal cilia. Hum Mol Genet. 2008;17(11):1578–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bonnet CS, Aldred M, von Ruhland C, Harris R, Sandford R, Cheadle JP. Defects in cell polarity underlie TSC and ADPKD-associated cystogenesis. Hum Mol Genet. 2009;18(12):2166–76.

    Article  CAS  PubMed  Google Scholar 

  96. Verdeguer F, Le Corre S, Fischer E, Callens C, Garbay S, Doyen A, et al. A mitotic transcriptional switch in polycystic kidney disease. Nat Med. 2010;16(1):106–10.

    Article  CAS  PubMed  Google Scholar 

  97. Park TJ, Mitchell BJ, Abitua PB, Kintner C, Wallingford JB. Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. Nat Genet. 2008;40(7):871–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ganner A, Lienkamp S, Schafer T, Romaker D, Wegierski T, Park TJ, et al. Regulation of ciliary polarity by the APC/C. Proc Natl Acad Sci U S A. 2009;106(42):17799–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nishio S, Tian X, Gallagher AR, Yu Z, Patel V, Igarashi P, et al. Loss of oriented cell division does not initiate cyst formation. J Am Soc Nephrol. 2010;21(2):295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. PMID 23143599 Nat Genet 2012;44(12):1382–7. doi:10.1038/ng.2452

    Google Scholar 

  101. Praetorius HA, Spring KR. Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol. 2001;184(1):71–9.

    Article  CAS  PubMed  Google Scholar 

  102. Praetorius HA, Spring KR. Removal of the MDCK cell primary cilium abolishes flow sensing. J Membr Biol. 2003;191(1):69–76.

    Article  CAS  PubMed  Google Scholar 

  103. Liu W, Murcia NS, Duan Y, Weinbaum S, Yoder BK, Schwiebert E, et al. Mechanoregulation of intracellular Ca2+ concentration is attenuated in collecting duct of monocilium-impaired orpk mice. Am J Physiol Renal Physiol. 2005;289(5):F978–88.

    Article  CAS  PubMed  Google Scholar 

  104. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet. 2003;33(2):129–37.

    Article  CAS  PubMed  Google Scholar 

  105. Xu C, Rossetti S, Jiang L, Harris PC, Brown-Glaberman U, Wandinger-Ness A, et al. Human ADPKD primary cyst epithelial cells with a novel, single codon deletion in the PKD1 gene exhibit defective ciliary polycystin localization and loss of flow-induced Ca2+ signaling. Am J Physiol Renal Physiol. 2007;292(3):F930–45.

    Article  CAS  PubMed  Google Scholar 

  106. Cowley Jr BD. Calcium, cyclic AMP, and MAP kinases: dysregulation in polycystic kidney disease. Kidney Int. 2008;73(3):251–3.

    Article  CAS  PubMed  Google Scholar 

  107. Xia S, Li X, Johnson T, Seidel C, Wallace DP, Li R. Polycystin-dependent fluid flow sensing targets histone deacetylase 5 to prevent the development of renal cysts. Development. 2010;137(7):1075–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 2002;4(9):648–57.

    Article  CAS  PubMed  Google Scholar 

  109. Shillingford JM, Murcia NS, Larson CH, Low SH, Hedgepeth R, Brown N, et al. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci U S A. 2006;103(14):5466–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Distefano G, Boca M, Rowe I, Wodarczyk C, Ma L, Piontek KB, et al. Polycystin-1 regulates extracellular signal-regulated kinase-dependent phosphorylation of tuberin to control cell size through mTOR and its downstream effectors S6K and 4EBP1. Mol Cell Biol. 2009;29(9):2359–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tao Y, Kim J, Schrier RW, Edelstein CL. Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease. J Am Soc Nephrol. 2005;16(1):46–51.

    Article  CAS  PubMed  Google Scholar 

  112. Walz G, Budde K, Mannaa M, Nurnberger J, Wanner C, Sommerer C, et al. Everolimus in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2010;363(9):830–40.

    Article  CAS  PubMed  Google Scholar 

  113. Boehlke C, Kotsis F, Patel V, Braeg S, Voelker H, Bredt S, et al. Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nat Cell Biol. 2010;12(11):1115–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yuan S, Li J, Diener DR, Choma MA, Rosenbaum JL, Sun Z. Target-of-rapamycin complex 1 (Torc1) signaling modulates cilia size and function through protein synthesis regulation. Proc Natl Acad Sci U S A. 2012;109(6):2021–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Johnson R, Halder G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov. 2014;13(1):63–79.

    Article  CAS  PubMed  Google Scholar 

  116. Morin-Kensicki EM, Boone BN, Howell M, Stonebraker JR, Teed J, Alb JG, et al. Defects in yolk sac vasculogenesis, chorioallantoic fusion, and embryonic axis elongation in mice with targeted disruption of Yap65. Mol Cell Biol. 2006;26(1):77–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Williamson KA, Rainger J, Floyd JA, Ansari M, Meynert A, Aldridge KV, et al. Heterozygous loss-of-function mutations in YAP1 cause both isolated and syndromic optic fissure closure defects. Am J Hum Genet. 2014;94(2):295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hossain Z, Ali SM, Ko HL, Xu J, Ng CP, Guo K, et al. Glomerulocystic kidney disease in mice with a targeted inactivation of Wwtr1. Proc Natl Acad Sci U S A. 2007;104(5):1631–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Makita R, Uchijima Y, Nishiyama K, Amano T, Chen Q, Takeuchi T, et al. Multiple renal cysts, urinary concentration defects, and pulmonary emphysematous changes in mice lacking TAZ. Am J Physiol Renal Physiol. 2008;294(3):F542–53.

    Article  CAS  PubMed  Google Scholar 

  120. Habbig S, Bartram MP, Muller RU, Schwarz R, Andriopoulos N, Chen S, et al. NPHP4, a cilia-associated protein, negatively regulates the Hippo pathway. J Cell Biol. 2011;193(4):633–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Frank V, Habbig S, Bartram MP, Eisenberger T, Veenstra-Knol HE, Decker C, et al. Mutations in NEK8 link multiple organ dysplasia with altered Hippo signalling and increased c-MYC expression. Hum Mol Genet. 2013;22(11):2177–85.

    Article  CAS  PubMed  Google Scholar 

  122. Habbig S, Bartram MP, Sagmuller JG, Griessmann A, Franke M, Muller RU, et al. The ciliopathy disease protein NPHP9 promotes nuclear delivery and activation of the oncogenic transcriptional regulator TAZ. Hum Mol Genet. 2012;21(26):5528–38.

    Article  CAS  PubMed  Google Scholar 

  123. Rosenbluh J, Nijhawan D, Cox AG, Li X, Neal JT, Schafer EJ, et al. beta-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell. 2012;151(7):1457–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Aragon E, Goerner N, Xi Q, Gomes T, Gao S, Massague J, et al. Structural basis for the versatile interactions of Smad7 with regulator WW domains in TGF-beta pathways. Structure. 2012;20(10):1726–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tschaharganeh DF, Chen X, Latzko P, Malz M, Gaida MM, Felix K, et al. Yes-associated protein up-regulates jagged-1 and activates the notch pathway in human hepatocellular carcinoma. Gastroenterology. 2013;144(7):1530–42.e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fernandez LA, Northcott PA, Dalton J, Fraga C, Ellison D, Angers S, et al. YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates sonic hedgehog-driven neural precursor proliferation. Genes Dev. 2009;23(23):2729–41.

    Article  CAS  Google Scholar 

  127. Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol. 2014;15(3):155–62.

    Article  CAS  PubMed  Google Scholar 

  128. Christensen ST, Pedersen SF, Satir P, Veland IR, Schneider L. The primary cilium coordinates signaling pathways in cell cycle control and migration during development and tissue repair. Curr Top Dev Biol. 2008;85:261–301.

    Article  CAS  PubMed  Google Scholar 

  129. Satir P, Pedersen LB, Christensen ST. The primary cilium at a glance. J Cell Sci. 2010;123(Pt 4):499–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Clement CA, Ajbro KD, Koefoed K, Vestergaard ML, Veland IR, Henriques de Jesus MP, et al. TGF-beta signaling is associated with endocytosis at the pocket region of the primary cilium. Cell Rep. 2013;3(6):1806–14.

    Article  CAS  PubMed  Google Scholar 

  131. Liu Y, Dai B, Xu C, Fu L, Hua Z, Mei C. Rosiglitazone inhibits transforming growth factor-beta1 mediated fibrogenesis in ADPKD cyst-lining epithelial cells. PLoS ONE. 2011;6(12):e28915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Guay-Woodford LM. Renal cystic diseases: diverse phenotypes converge on the cilium/centrosome complex. Pediatr Nephrol. 2006;21(10):1369–76.

    Article  PubMed  Google Scholar 

  133. Kleffmann J, Frank V, Ferbert A, Bergmann C. Dosage-sensitive network in polycystic kidney and liver disease: multiple mutations cause severe hepatic and neurological complications. J Hepatol. 2012;57(2):476–7.

    Article  PubMed  Google Scholar 

  134. Harris PC, Torres VE. Polycystic kidney disease. Annu Rev Med. 2009;60:321–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science. 1996;272(5266):1339–42.

    Article  CAS  PubMed  Google Scholar 

  136. Hughes J, Ward CJ, Peral B, Aspinwall R, Clark K, San Millan JL, et al. The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet. 1995;10(2):151–60.

    Article  CAS  PubMed  Google Scholar 

  137. Beales PL, Elcioglu N, Woolf AS, Parker D, Flinter FA. New criteria for improved diagnosis of Bardet-Biedl syndrome: results of a population survey. J Med Genet. 1999;36(6):437–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Forsythe E, Beales PL. Bardet-Biedl syndrome. Eur J Hum Genet. 2013;21(1):8–13.

    Article  CAS  PubMed  Google Scholar 

  139. Katsanis N, Ansley SJ, Badano JL, Eichers ER, Lewis RA, Hoskins BE, et al. Triallelic inheritance in Bardet-Biedl syndrome, a Mendelian recessive disorder. Science. 2001;293(5538):2256–9.

    Article  CAS  PubMed  Google Scholar 

  140. Eichers ER, Lewis RA, Katsanis N, Lupski JR. Triallelic inheritance: a bridge between Mendelian and multifactorial traits. Ann Med. 2004;36(4):262–72.

    Article  CAS  PubMed  Google Scholar 

  141. Redin C, Le Gras S, Mhamdi O, Geoffroy V, Stoetzel C, Vincent MC, et al. Targeted high-throughput sequencing for diagnosis of genetically heterogeneous diseases: efficient mutation detection in Bardet-Biedl and Alstrom syndromes. J Med Genet. 2012;49(8):502–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Imhoff O, Marion V, Stoetzel C, Durand M, Holder M, Sigaudy S, et al. Bardet-Biedl syndrome: a study of the renal and cardiovascular phenotypes in a French cohort. Clin J Am Soc Nephrol. 2011;6(1):22–9.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Sheffield VC. The blind leading the obese: the molecular pathophysiology of a human obesity syndrome. Trans Am Clin Climatol Assoc. 2010;121:172–81; discussion 81–2.

    PubMed  PubMed Central  Google Scholar 

  144. Nachury MV, Seeley ES, Jin H. Trafficking to the ciliary membrane: how to get across the periciliary diffusion barrier? Annu Rev Cell Dev Biol. 2010;26:59–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Forsythe E, Beales PL. Bardet Biedl syndrome. Eur J Hum Gen. 2012;21:8–13.

    Article  CAS  Google Scholar 

  146. Marshall JD, Maffei P, Beck S, Barrett TG, Paisey R, Naggert JK. Clinical utility gene card for: Alstrom Syndrome – update 2013. Eur J Hum Genet. 2013;21(11).

    Google Scholar 

  147. Hearn T, Spalluto C, Phillips VJ, Renforth GL, Copin N, Hanley NA, et al. Subcellular localization of ALMS1 supports involvement of centrosome and basal body dysfunction in the pathogenesis of obesity, insulin resistance, and type 2 diabetes. Diabetes. 2005;54(5):1581–7.

    Article  CAS  PubMed  Google Scholar 

  148. Li G, Vega R, Nelms K, Gekakis N, Goodnow C, McNamara P, et al. A role for Alstrom syndrome protein, alms1, in kidney ciliogenesis and cellular quiescence. PLoS Genet. 2007;3(1):e8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Jagger D, Collin G, Kelly J, Towers E, Nevill G, Longo-Guess C, et al. Alstrom syndrome protein ALMS1 localizes to basal bodies of cochlear hair cells and regulates cilium-dependent planar cell polarity. Hum Mol Genet. 2011;20(3):466–81.

    Article  CAS  PubMed  Google Scholar 

  150. Collin GB, Marshall JD, King BL, Milan G, Maffei P, Jagger DJ, et al. The Alstrom syndrome protein, ALMS1, interacts with alpha-actinin and components of the endosome recycling pathway. PLoS ONE. 2012;7(5):e37925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Maria BL, Quisling RG, Rosainz LC, Yachnis AT, Gitten J, Dede D, et al. Molar tooth sign in Joubert syndrome: clinical, radiologic, and pathologic significance. J Child Neurol. 1999;14(6):368–76.

    Article  CAS  PubMed  Google Scholar 

  152. Brancati F, Dallapiccola B, Valente EM. Joubert syndrome and related disorders. Orphanet J Rare Dis. 2010;5:20.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Iannicelli M, Brancati F, Mougou-Zerelli S, Mazzotta A, Thomas S, Elkhartoufi N, et al. Novel TMEM67 mutations and genotype-phenotype correlates in meckelin-related ciliopathies. Hum Mutat. 2010;31(5):E1319–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Valente EM, Dallapiccola B, Bertini E. Joubert syndrome and related disorders. Handb Clin Neurol. 2013;113:1879–88.

    Article  PubMed  Google Scholar 

  155. Lopez E, Thauvin-Robinet C, Reversade B, Khartoufi NE, Devisme L, Holder M, et al. C5orf42 is the major gene responsible for OFD syndrome type VI. Hum Genet. 2014;133(3):367–77.

    Article  CAS  PubMed  Google Scholar 

  156. Betleja E, Cole DG. Ciliary trafficking: CEP290 guards a gated community. Curr Biol. 2010;20(21):R928–31.

    Article  CAS  PubMed  Google Scholar 

  157. Huber C, Cormier-Daire V. Ciliary disorder of the skeleton. Am J Med Genet C: Semin Med Genet. 2012;160C(3):165–74.

    Article  CAS  Google Scholar 

  158. El Hokayem J, Huber C, Couve A, Aziza J, Baujat G, Bouvier R, et al. NEK1 and DYNC2H1 are both involved in short rib polydactyly Majewski type but not in Beemer Langer cases. J Med Genet. 2012;49(4):227–33.

    Article  PubMed  CAS  Google Scholar 

  159. Cavalcanti DP, Huber C, Sang KH, Baujat G, Collins F, Delezoide AL, et al. Mutation in IFT80 in a fetus with the phenotype of Verma-Naumoff provides molecular evidence for Jeune-Verma-Naumoff dysplasia spectrum. J Med Genet. 2011;48(2):88–92.

    Article  CAS  PubMed  Google Scholar 

  160. Thiel C, Kessler K, Giessl A, Dimmler A, Shalev SA, von der Haar S, et al. NEK1 mutations cause short-rib polydactyly syndrome type majewski. Am J Hum Genet. 2011;88(1):106–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Chen Y, Chen CF, Riley DJ, Chen PL. Nek1 kinase functions in DNA damage response and checkpoint control through a pathway independent of ATM and ATR. Cell Cycle. 2011;10(4):655–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Upadhya P, Birkenmeier EH, Birkenmeier CS, Barker JE. Mutations in a NIMA-related kinase gene, Nek1, cause pleiotropic effects including a progressive polycystic kidney disease in mice. Proc Natl Acad Sci U S A. 2000;97(1):217–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Surpili MJ, Delben TM, Kobarg J. Identification of proteins that interact with the central coiled-coil region of the human protein kinase NEK1. Biochemistry. 2003;42(51):15369–76.

    Article  CAS  PubMed  Google Scholar 

  164. Yim H, Sung CK, You J, Tian Y, Benjamin T. Nek1 and TAZ interact to maintain normal levels of polycystin 2. J Am Soc Nephrol. 2011;22(5):832–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ma M, Tian X, Igarashi P, Pazour GJ, Somlo S. Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease. Nat Genet. 2013;45(9):1004–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Arts HH, Knoers NV. Current insights into renal ciliopathies: what can genetics teach us? Pediatr Nephrol. 2013;28(6):863–74.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We apologize to all colleagues whose findings could not be cited due to space constraints. Miriam Schmidts and Philip L. Beales acknowledge funding from the Dutch Kidney Foundation, DKF (KOUNCIl, CP11.18). Miriam Schmidts is funded by an Action Medical Research UK Clinical Training Fellowship (RTF-1411) and Philip L. Beales receives funding from the European Community’s Seventh Framework Programme FP7/2009; 241955, SYSCILIA, the Wellcome Trust and is an NIHR Senior Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Schmidts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmidts, M., Beales, P.L. (2016). Ciliopathies: Their Role in Pediatric Renal Disease. In: Geary, D., Schaefer, F. (eds) Pediatric Kidney Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52972-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52972-0_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52970-6

  • Online ISBN: 978-3-662-52972-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics