Skip to main content

Cutaneous DNA Immunization: Enhancing Penetration by Hair Follicle Modification or Microneedle Application

  • Chapter
  • First Online:
Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement

Abstract

Vaccines are often administered by subcutaneous or intramuscular injections. However, there is evidence that the skin is an ideal site for vaccination. Delivery of antigens into the epidermis and dermis layers of skin, where there is a high density of LCs and DCs, can potentially induce a strong immune response. However, by nature, skin is not very permeable for antigens. The major hurdle in skin permeation is the outermost stratum corneum layer. Cutaneous DNA immunization was proven feasible in 1999. However, the immune response induced by cutaneous DNA immunization is generally weak, and various techniques have been explored to enhance it. In this chapter, we will discuss two of the techniques, cutaneous DNA immunization by modifying hair follicles or hair follicle cycle and microneedle-mediated cutaneous DNA immunization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aguiar JC, Hedstrom RC, Rogers WO, Charoenvit Y, Sacci JB Jr, Lanar DE et al (2001) Enhancement of the immune response in rabbits to a malaria DNA vaccine by immunization with a needle-free jet device. Vaccine 20(1–2):275–280. S0264410X01002730 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Ahad A, Aqil M, Kohli K, Sultana Y, Mujeeb M, Ali A (2010) Transdermal drug delivery: the inherent challenges and technological advancements. Transdermal drug delivery. Asian J Pharm Sci 5(6):276–288

    Google Scholar 

  • Alarcon JB, Hartley AW, Harvey NG, Mikszta JA (2007) Preclinical evaluation of microneedle technology for intradermal delivery of influenza vaccines. Clin Vaccine Immunol 14(4):375–381. doi:10.1128/CVI.00387-06. CVI.00387-06 [pii]

  • Bal SM, Ding Z, Kersten GF, Jiskoot W, Bouwstra JA (2010) Microneedle-based transcutaneous immunisation in mice with N-trimethyl chitosan adjuvanted diphtheria toxoid formulations. Pharm Res 27(9):1837–1847. doi:10.1007/s11095-010-0182-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bal SM, Slutter B, Jiskoot W, Bouwstra JA (2011) Small is beautiful: N-trimethyl chitosan-ovalbumin conjugates for microneedle-based transcutaneous immunisation. Vaccine 29(23):4025–4032. doi:10.1016/j.vaccine.2011.03.039. S0264-410X(11)00407-5[pii]

    Article  CAS  PubMed  Google Scholar 

  • Ban E, Dupre L, Hermann E, Rohn W, Vendeville C, Quatannens B et al (2000) CpG motifs induce Langerhans cell migration in vivo. Int Immunol 12(6):737–745

    Article  CAS  PubMed  Google Scholar 

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252. doi:10.1038/32588

    Article  CAS  PubMed  Google Scholar 

  • Barichello JM, Morishita M, Takayama K, Nagai T (1999) Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm 25(4):471–476. doi:10.1081/DDC-100102197

    Article  CAS  PubMed  Google Scholar 

  • Beignon AS, Briand JP, Muller S, Partidos CD (2001) Immunization onto bare skin with heat-labile enterotoxin of Escherichia coli enhances immune responses to coadministered protein and peptide antigens and protects mice against lethal toxin challenge. Immunology 102(3):344–351. imm1183 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beignon AS, Briand JP, Rappuoli R, Muller S, Partidos CD (2002) The LTR72 mutant of heat-labile enterotoxin of Escherichia coli enhances the ability of peptide antigens to elicit CD4(+) T cells and secrete gamma interferon after coapplication onto bare skin. Infect Immun 70(6):3012–3019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belshe RB, Newman FK, Cannon J, Duane C, Treanor J, Van Hoecke C et al (2004) Serum antibody responses after intradermal vaccination against influenza. N Engl J Med 351(22):2286–2294. doi:10.1056/NEJMoa043555. NEJMoa043555 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Berner B, Dinh SM (1998) Electronically assisted drug delivery: an overview. In: Berner B, Dinh SM (eds) Electronically controlled drug delivery. CRC Press, Boca Raton, pp 3–7

    Google Scholar 

  • Birchall J, Coulman S, Pearton M, Allender C, Brain K, Anstey A et al (2005) Cutaneous DNA delivery and gene expression in ex vivo human skin explants via wet-etch micro-fabricated micro-needles. J Drug Target 13(7):415–421. doi:10.1080/10611860500383705. M34X12311181V373 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Bos JD, Meinardi MM (2000) The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol 9(3):165–169

    Article  CAS  PubMed  Google Scholar 

  • Boucaud A, Garrigue MA, Machet L, Vaillant L, Patat F (2002) Effect of sonication parameters on transdermal delivery of insulin to hairless rats. J Control Release 81(1–2):113–119. S0168365902000548 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Bramson J, Dayball K, Evelegh C, Wan YH, Page D, Smith A (2003) Enabling topical immunization via microporation: a novel method for pain-free and needle-free delivery of adenovirus-based vaccines. Gene Ther 10(3):251–260. doi:10.1038/sj.gt.33018863301886 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Bronaugh RL, Stewart RF, Congdon ER (1982) Methods for in vitro percutaneous absorption studies II. Animal models for human skin. Toxicol Appl Pharmacol 62(3):481–488

    Article  CAS  PubMed  Google Scholar 

  • Cattamanchi A, Posavad CM, Wald A, Baine Y, Moses J, Higgins TJ et al (2008) Phase I study of a herpes simplex virus type 2 (HSV-2) DNA vaccine administered to healthy, HSV-2-seronegative adults by a needle-free injection system. Clin Vaccine Immunol 15(11):1638–1643. doi:10.1128/CVI.00167-08CVI.00167-08 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chabri F, Bouris K, Jones T, Barrow D, Hann A, Allender C et al (2004) Microfabricated silicon microneedles for nonviral cutaneous gene delivery. Br J Dermatol 150(5):869–877. doi:10.1111/j.1365-2133.2004.05921.xBJD5921 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Endres RL, Erickson CA, Maa YF, Payne LG (2002) Epidermal powder immunization using non-toxic bacterial enterotoxin adjuvants with influenza vaccine augments protective immunity. Vaccine 20(21–22):2671–2679. S0264410X02002153 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Endres R, Maa YF, Kensil CR, Whitaker-Dowling P, Trichel A et al (2003) Epidermal powder immunization of mice and monkeys with an influenza vaccine. Vaccine 21(21–22):2830–2836. S0264410X03001750 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Burger M, Chu Q, Endres R, Zuleger C, Dean H et al (2004) Epidermal powder immunization: cellular and molecular mechanisms for enhancing vaccine immunogenicity. Virus Res 103(1–2):147–153. doi:10.1016/j.virusres.2004.02.027. S0168170204001261[pii]

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Prow TW, Crichton ML, Jenkins DW, Roberts MS, Frazer IH et al (2009) Dry-coated microprojection array patches for targeted delivery of immunotherapeutics to the skin. J Control Release 139(3):212–220. doi:10.1016/j.jconrel.2009.06.029. S0168-3659(09)00447-7[pii]

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Kask AS, Crichton ML, McNeilly C, Yukiko S, Dong L et al (2010) Improved DNA vaccination by skin-targeted delivery using dry-coated densely-packed microprojection arrays. J Control Release 148(3):327–333. doi:10.1016/j.jconrel.2010.09.001. S0168-3659(10)00744-3[pii]

    Article  CAS  PubMed  Google Scholar 

  • Choi MJ, Maibach HI (2003) Topical vaccination of DNA antigens: topical delivery of DNA antigens. Skin Pharmacol Appl Skin Physiol 16(5):271–282. 7206772067 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Combadiere B, Vogt A, Mahe B, Costagliola D, Hadam S, Bonduelle O et al (2010) Preferential amplification of CD8 effector-T cells after transcutaneous application of an inactivated influenza vaccine: a randomized phase I trial. PLoS One 5(5):e10818. doi:10.1371/journal.pone.0010818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cornelie S, Poulain-Godefroy O, Lund C, Vendeville C, Ban E, Capron M et al (2004) Methylated CpG-containing plasmid activates the immune system. Scand J Immunol 59(2):143–151. 1373 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Coulman SA, Barrow D, Anstey A, Gateley C, Morrissey A, Wilke N et al (2006) Minimally invasive cutaneous delivery of macromolecules and plasmid DNA via microneedles. Curr Drug Deliv 3(1):65–75

    Article  CAS  PubMed  Google Scholar 

  • Cui Z, Mumper RJ (2001) Chitosan-based nanoparticles for topical genetic immunization. J Control Release 75(3):409–419. S0168365901004072 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Cui Z, Mumper RJ (2002) Topical immunization using nanoengineered genetic vaccines. J Control Release 81(1–2):173–184. S0168365902000512 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Cui Z, Mumper RJ (2003) Microparticles and nanoparticles as delivery systems for DNA vaccines. Crit Rev Ther Drug Carrier Syst 20(2–3):103–137

    Article  CAS  PubMed  Google Scholar 

  • Cui Z, Sloat BR (2006) Topical immunization onto mouse skin using a microemulsion incorporated with an anthrax protective antigen protein-encoding plasmid. Int J Pharm 317(2):187–191. doi:10.1016/j.ijpharm.2006.04.013. S0378-5173(06)00336-X [pii]

    Article  CAS  PubMed  Google Scholar 

  • Cui Z, Baizer L, Mumper RJ (2003) Intradermal immunization with novel plasmid DNA-coated nanoparticles via a needle-free injection device. J Biotechnol 102(2):105–115. S0168165603000294 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Daugimont L, Baron N, Vandermeulen G, Pavselj N, Miklavcic D, Jullien MC et al (2010) Hollow microneedle arrays for intradermal drug delivery and DNA electroporation. J Membr Biol 236(1):117–125. doi:10.1007/s00232-010-9283-0

    Article  CAS  PubMed  Google Scholar 

  • Davis SP, Martanto W, Allen MG, Prausnitz MR (2005) Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans Biomed Eng 52(5):909–915. doi:10.1109/TBME.2005.845240

    Article  PubMed  Google Scholar 

  • DeMuth PC, Su X, Samuel RE, Hammond PT, Irvine DJ (2010) Nano-layered microneedles for transcutaneous delivery of polymer nanoparticles and plasmid DNA. Adv Mater 22(43):4851–4856. doi:10.1002/adma.201001525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denet AR, Preat V (2003) Transdermal delivery of timolol by electroporation through human skin. J Control Release 88(2):253–262. S0168365903000105 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Denet AR, Vanbever R, Preat V (2004) Skin electroporation for transdermal and topical delivery. Adv Drug Deliv Rev 56(5):659–674. doi:10.1016/j.addr.2003.10.027. S0169409X03002436[pii]

    Article  CAS  PubMed  Google Scholar 

  • Ding Z, Verbaan FJ, Bivas-Benita M, Bungener L, Huckriede A, van den Berg DJ et al (2009) Microneedle arrays for the transcutaneous immunization of diphtheria and influenza in BALB/c mice. J Control Release 136(1):71–78. doi:10.1016/j.jconrel.2009.01.025. S0168-3659(09)00079-0[pii]

    Article  CAS  PubMed  Google Scholar 

  • Domashenko A, Gupta S, Cotsarelis G (2000) Efficient delivery of transgenes to human hair follicle progenitor cells using topical lipoplex. Nat Biotechnol 18(4):420–423. doi:10.1038/74480

    Article  CAS  PubMed  Google Scholar 

  • Donnelly J, Berry K, Ulmer JB (2003) Technical and regulatory hurdles for DNA vaccines. Int J Parasitol 33(5–6):457–467. S0020751903000560 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Donnelly RF, Morrow DI, Singh TR, Migalska K, McCarron PA, O’Mahony C et al (2009) Processing difficulties and instability of carbohydrate microneedle arrays. Drug Dev Ind Pharm 35(10):1242–1254. doi:10.1080/03639040902882280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drabick JJ, Glasspool-Malone J, King A, Malone RW (2001) Cutaneous transfection and immune responses to intradermal nucleic acid vaccination are significantly enhanced by in vivo electropermeabilization. Mol Ther 3(2):249–255. doi:10.1006/mthe.2000.0257. S1525001600902570[pii]

    Article  CAS  PubMed  Google Scholar 

  • Elias PM (1983) Epidermal lipids, barrier function, and desquamation. J Invest Dermatol 80(Suppl):44s–49s

    Article  CAS  Google Scholar 

  • Endoh M, Koibuchi N, Sato M, Morishita R, Kanzaki T, Murata Y et al (2002) Fetal gene transfer by intrauterine injection with microbubble-enhanced ultrasound. Mol Ther 5(5 Pt 1):501–508. doi:10.1006/mthe.2002.0577. S1525001602905770[pii]

    Article  CAS  PubMed  Google Scholar 

  • Fan H, Lin Q, Morrissey GR, Khavari PA (1999) Immunization via hair follicles by topical application of naked DNA to normal skin. Nat Biotechnol 17(9):870–872. doi:10.1038/12856

    Article  CAS  PubMed  Google Scholar 

  • Fynan EF, Webster RG, Fuller DH, Haynes JR, Santoro JC, Robinson HL (1993) DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Natl Acad Sci U S A 90(24):11478–11482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerstel MS, Place VA (1976) Drug delivery device. US Patent No. US3, 964, 482

    Google Scholar 

  • Gill HS, Prausnitz MR (2007a) Coated microneedles for transdermal delivery. J Control Release 117(2):227–237. doi:10.1016/j.jconrel.2006.10.017. S0168-3659(06)00583-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Gill HS, Prausnitz MR (2007b) Coating formulations for microneedles. Pharm Res 24(7):1369–1380. doi:10.1007/s11095-007-9286-4

    Article  CAS  PubMed  Google Scholar 

  • Gill HS, Soderholm J, Prausnitz MR, Sallberg M (2010) Cutaneous vaccination using microneedles coated with hepatitis C DNA vaccine. Gene Ther 17(6):811–814. doi:10.1038/gt.2010.22gt201022 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glenn GM, Kenney RT (2006) Mass vaccination: solutions in the skin. Curr Top Microbiol Immunol 304:247–268

    CAS  PubMed  Google Scholar 

  • Glenn GM, Rao M, Matyas GR, Alving CR (1998) Skin immunization made possible by cholera toxin. Nature 391(6670):851. doi:10.1038/36014

    Article  CAS  PubMed  Google Scholar 

  • Glenn GM, Taylor DN, Li X, Frankel S, Montemarano A, Alving CR (2000) Transcutaneous immunization: a human vaccine delivery strategy using a patch. Nat Med 6(12):1403–1406. doi:10.1038/82225

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Domashenko A, Cotsarelis G (2001) The hair follicle as a target for gene therapy. Eur J Dermatol 11(4):353–356

    CAS  PubMed  Google Scholar 

  • Haensler J, Verdelet C, Sanchez V, Girerd-Chambaz Y, Bonnin A, Trannoy E et al (1999) Intradermal DNA immunization by using jet-injectors in mice and monkeys. Vaccine 17(7–8):628–638. S0264-410X(98)00242-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Hashmi S, Ling P, Hashmi G, Reed M, Gaugler R, Trimmer W (1995) Genetic transformation of nematodes using arrays of micromechanical piercing structures. Biotechniques 19(5):766–770

    CAS  PubMed  Google Scholar 

  • Heckert RA, Elankumaran S, Oshop GL, Vakharia VN (2002) A novel transcutaneous plasmid-dimethylsulfoxide delivery technique for avian nucleic acid immunization. Vet Immunol Immunopathol 89(1–2):67–81. S0165242702001861 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Heller R, Schultz J, Lucas ML, Jaroszeski MJ, Heller LC, Gilbert RA et al (2001) Intradermal delivery of interleukin-12 plasmid DNA by in vivo electroporation. DNA Cell Biol 20(1):21–26. doi:10.1089/10445490150504666

    Article  CAS  PubMed  Google Scholar 

  • Henry S, McAllister DV, Allen MG, Prausnitz MR (1998) Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci 87(8):922–925. doi:10.1021/js980042+10.1021/js980042+ [pii]

    Article  CAS  PubMed  Google Scholar 

  • Holzle E, Alberti N (1987) Long-term efficacy and side effects of tap water iontophoresis of palmoplantar hyperhidrosis – the usefulness of home therapy. Dermatologica 175(3):126–135

    Article  CAS  PubMed  Google Scholar 

  • Hooper JW, Golden JW, Ferro AM, King AD (2007) Smallpox DNA vaccine delivered by novel skin electroporation device protects mice against intranasal poxvirus challenge. Vaccine 25(10):1814–1823. doi:10.1016/j.vaccine.2006.11.017. S0264-410X(06)01202-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Hull W (2002) Heat-enhanced transdermal drug delivery: a survey paper. J Appl Res 2:1–9

    Google Scholar 

  • Ishimatsu-Tsuji Y, Moro O, Kishimoto J (2005) Expression profiling and cellular localization of genes associated with the hair cycle induced by wax depilation. J Invest Dermatol 125(3):410–420. doi:10.1111/j.0022-202X.2005.23825.x. JID23825 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Hagiwara E, Saeki A, Sugioka N, Takada K (2006a) Feasibility of microneedles for percutaneous absorption of insulin. Eur J Pharm Sci 29(1):82–88. doi:10.1016/j.ejps.2006.05.011. S0928-0987(06)00161-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Yoshimitsu J, Shiroyama K, Sugioka N, Takada K (2006b) Self-dissolving microneedles for the percutaneous absorption of EPO in mice. J Drug Target 14(5):255–261. doi:10.1080/10611860600785080. X4H5102325593211 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Jacobson RM, Swan A, Adegbenro A, Ludington SL, Wollan PC, Poland GA (2001) Making vaccines more acceptable--methods to prevent and minimize pain and other common adverse events associated with vaccines. Vaccine 19(17–19):2418–2427. S0264410X00004667 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Karande P, Mitragotri S (2010) Transcutaneous immunization: an overview of advantages, disease targets, vaccines, and delivery technologies. Annu Rev Chem Biomol Eng 1:175–201. doi:10.1146/annurev-chembioeng-073009-100948

    Article  CAS  PubMed  Google Scholar 

  • Kask AS, Chen X, Marshak JO, Dong L, Saracino M, Chen D et al (2010) DNA vaccine delivery by densely-packed and short microprojection arrays to skin protects against vaginal HSV-2 challenge. Vaccine 28(47):7483–7491. doi:10.1016/j.vaccine.2010.09.014. S0264-410X(10)01322-8[pii]

    Article  CAS  PubMed  Google Scholar 

  • Kaushik S, Hord AH, Denson DD, McAllister DV, Smitra S, Allen MG et al (2001) Lack of pain associated with microfabricated microneedles. Anesth Analg 92(2):502–504

    Article  CAS  PubMed  Google Scholar 

  • Kenney RT, Frech SA, Muenz LR, Villar CP, Glenn GM (2004) Dose sparing with intradermal injection of influenza vaccine. N Engl J Med 351(22):2295–2301. doi:10.1056/NEJMoa043540. NEJMoa043540[pii]

    Article  CAS  PubMed  Google Scholar 

  • Kim MK, Kini NM, Troshynski TJ, Hennes HM (1999) A randomized clinical trial of dermal anesthesia by iontophoresis for peripheral intravenous catheter placement in children. Ann Emerg Med 33(4):395–399. S0196064499001109 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Kim YC, Jarrahian C, Zehrung D, Mitragotri S, Prausnitz MR (2012a) Delivery systems for intradermal vaccination. Curr Top Microbiol Immunol 351:77–112. doi:10.1007/82_2011_123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YC, Song JM, Lipatov AS, Choi SO, Lee JW, Donis RO et al (2012b) Increased immunogenicity of avian influenza DNA vaccine delivered to the skin using a microneedle patch. Eur J Pharm Biopharm 81(2):239–247. doi:10.1016/j.ejpb.2012.03.010. S0939-6411(12)00085-9[pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimberlin DW (2004) Neonatal herpes simplex infection. Clin Microbiol Rev 17(1):1–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Knorr F, Lademann J, Patzelt A, Sterry W, Blume-Peytavi U, Vogt A (2009) Follicular transport route – research progress and future perspectives. Eur J Pharm Biopharm 71(2):173–180. doi:10.1016/j.ejpb.2008.11.001. S0939-6411(08)00442-6[pii]

    Article  CAS  PubMed  Google Scholar 

  • Kolli CS, Banga AK (2008) Characterization of solid maltose microneedles and their use for transdermal delivery. Pharm Res 25(1):104–113. doi:10.1007/s11095-007-9350-0

    Article  CAS  PubMed  Google Scholar 

  • Koutsonanos DG, del Pilar Martin M, Zarnitsyn VG, Sullivan SP, Compans RW, Prausnitz MR et al (2009) Transdermal influenza immunization with vaccine-coated microneedle arrays. PLoS One 4(3):e4773. doi:10.1371/journal.pone.0004773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koutsonanos DG, del Pilar Martin M, Zarnitsyn VG, Jacob J, Prausnitz MR, Compans RW et al (2011) Serological memory and long-term protection to novel H1N1 influenza virus after skin vaccination. J Infect Dis 204(4):582–591. doi:10.1093/infdis/jir094jir094 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Philip A (2007) Modified transdermal technologies: breaking the barriers of drug permeation via the skin. Trop J Pharm Res 6(1):633–644

    Article  Google Scholar 

  • Kumar A, Li X, Sandoval MA, Rodriguez BL, Sloat BR, Cui Z (2011) Permeation of antigen protein-conjugated nanoparticles and live bacteria through microneedle-treated mouse skin. Int J Nanomedicine 6:1253–1264. doi:10.2147/IJN.S20413ijn-6-1253 [pii]

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Wonganan P, Sandoval MA, Li X, Zhu S, Cui Z (2012) Microneedle-mediated transcutaneous immunization with plasmid DNA coated on cationic PLGA nanoparticles. J Control Release 163(2):230–239. doi:10.1016/j.jconrel.2012.08.011. S0168-3659(12)00623-2[pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • La Montagne JR, Fauci AS (2004) Intradermal influenza vaccination – can less be more? N Engl J Med 351(22):2330–2332. doi:10.1056/NEJMe048314. NEJMe048314 [pii]

    Article  PubMed  Google Scholar 

  • Lane JM, Goldstein J (2003) Evaluation of 21st-century risks of smallpox vaccination and policy options. Ann Intern Med 138(6):488–493. 200303180–00014 [pii]

    Article  PubMed  Google Scholar 

  • Levine MM, Sztein MB (2004) Vaccine development strategies for improving immunization: the role of modern immunology. Nat Immunol 5(5):460–464. doi:10.1038/ni0504-460ni0504-460 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Li L, Hoffman RM (1995) The feasibility of targeted selective gene therapy of the hair follicle. Nat Med 1(7):705–706

    Article  PubMed  Google Scholar 

  • Lin W, Cormier M, Samiee A, Griffin A, Johnson B, Teng CL et al (2001) Transdermal delivery of antisense oligonucleotides with microprojection patch (Macroflux) technology. Pharm Res 18(12):1789–1793

    Article  CAS  PubMed  Google Scholar 

  • Lisziewicz J, Trocio J, Whitman L, Varga G, Xu J, Bakare N et al (2005) DermaVir: a novel topical vaccine for HIV/AIDS. J Invest Dermatol 124(1):160–169. doi:10.1111/j.0022-202X.2004.23535.x. JID23535 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Mahe B, Vogt A, Liard C, Duffy D, Abadie V, Bonduelle O et al (2009) Nanoparticle-based targeting of vaccine compounds to skin antigen-presenting cells by hair follicles and their transport in mice. J Invest Dermatol 129(5):1156–1164. doi:10.1038/jid.2008.356jid2008356 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Manam S, Ledwith BJ, Barnum AB, Troilo PJ, Pauley CJ, Harper LB et al (2000) Plasmid DNA vaccines: tissue distribution and effects of DNA sequence, adjuvants and delivery method on integration into host DNA. Intervirology 43(4–6):273–281. 53994 [pii]53994

    Article  CAS  PubMed  Google Scholar 

  • Martanto W, Davis SP, Holiday NR, Wang J, Gill HS, Prausnitz MR (2004) Transdermal delivery of insulin using microneedles in vivo. Pharm Res 21(6):947–952

    Article  CAS  PubMed  Google Scholar 

  • Matriano JA, Cormier M, Johnson J, Young WA, Buttery M, Nyam K et al (2002) Macroflux microprojection array patch technology: a new and efficient approach for intracutaneous immunization. Pharm Res 19(1):63–70

    Article  CAS  PubMed  Google Scholar 

  • McAllister DV, Allen MG, Prausnitz MR (2000) Microfabricated microneedles for gene and drug delivery. Annu Rev Biomed Eng 2:289–313. doi:10.1146/annurev.bioeng.2.1.289. 2/1/289 [pii]

    Article  CAS  PubMed  Google Scholar 

  • McAllister DV, Wang PM, Davis SP, Park JH, Canatella PJ, Allen MG et al (2003) Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci U S A 100(24):13755–13760. doi:10.1073/pnas.23313161002331316100 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikszta JA, Alarcon JB, Brittingham JM, Sutter DE, Pettis RJ, Harvey NG (2002) Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat Med 8(4):415–419. doi:10.1038/nm0402-415nm0402-415 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Mikszta JA, Sullivan VJ, Dean C, Waterston AM, Alarcon JB, Dekker JP 3rd et al (2005) Protective immunization against inhalational anthrax: a comparison of minimally invasive delivery platforms. J Infect Dis 191(2):278–288. doi:10.1086/426865. JID32601 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Mikszta JA, Dekker JP 3rd, Harvey NG, Dean CH, Brittingham JM, Huang J et al (2006) Microneedle-based intradermal delivery of the anthrax recombinant protective antigen vaccine. Infect Immun 74(12):6806–6810. doi:10.1128/IAI.01210-06. IAI.01210-06 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitragotri S (2005) Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat Rev Drug Discov 4(3):255–260. doi:10.1038/nrd1662. nrd1662 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S, Kost J (2000) Low-frequency sonophoresis: a noninvasive method of drug delivery and diagnostics. Biotechnol Prog 16(3):488–492. doi:10.1021/bp000024+. bp000024+ [pii]

    Article  CAS  PubMed  Google Scholar 

  • Mumper RJ, Cui Z (2003) Genetic immunization by jet injection of targeted pDNA-coated nanoparticles. Methods 31(3):255–262. S1046202303001385 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Murthy SN, Sen A, Zhao YL, Hui SW (2003) pH influences the postpulse permeability state of skin after electroporation. J Control Release 93(1):49–57. S0168365903003869 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Nicolas JF, Guy B (2008) Intradermal, epidermal and transcutaneous vaccination: from immunology to clinical practice. Expert Rev Vaccines 7(8):1201–1214. doi:10.1586/14760584.7.8.1201

    Article  PubMed  Google Scholar 

  • Ogura M, Paliwal S, Mitragotri S (2008) Low-frequency sonophoresis: current status and future prospects. Adv Drug Deliv Rev 60(10):1218–1223. doi:10.1016/j.addr.2008.03.006. S0169-409X(08)00086-0[pii]

    Article  CAS  PubMed  Google Scholar 

  • Otberg N, Richter H, Knuttel A, Schaefer H, Sterry W, Lademann J (2004) Laser spectroscopic methods for the characterization of open and closed follicles. Laser Phys Lett 1(1):46–49

    Article  Google Scholar 

  • Ovsianikov A, Chichkov B, Mente P, Monteiro-Riviere NA, Doraiswamy A, Narayan RJ (2007) Two photon polymerization of polymer–ceramic hybrid materials for transdermal drug delivery. Int J Appl Ceram Technol 4(1):22–29

    Article  CAS  Google Scholar 

  • Park JH, Allen MG, Prausnitz MR (2005) Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release 104(1):51–66. doi:10.1016/j.jconrel.2005.02.002. S0168-3659(05)00056-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Patil SD, Rhodes DG, Burgess DJ (2005) DNA-based therapeutics and DNA delivery systems: a comprehensive review. AAPS J 7(1):E61–E77. doi:10.1208/aapsj070109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paus R, Cotsarelis G (1999) The biology of hair follicles. N Engl J Med 341(7):491–497. doi:10.1056/NEJM199908123410706

    Article  CAS  PubMed  Google Scholar 

  • Pearton M, Allender C, Brain K, Anstey A, Gateley C, Wilke N et al (2008) Gene delivery to the epidermal cells of human skin explants using microfabricated microneedles and hydrogel formulations. Pharm Res 25(2):407–416. doi:10.1007/s11095-007-9360-y

    Article  CAS  PubMed  Google Scholar 

  • Pearton M, Saller V, Coulman SA, Gateley C, Anstey AV, Zarnitsyn V et al (2012) Microneedle delivery of plasmid DNA to living human skin: Formulation coating, skin insertion and gene expression. J Control Release 160(3):561–569. doi:10.1016/j.jconrel.2012.04.005. S0168-3659(12)00246-5[pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips AJ (2001) The challenge of gene therapy and DNA delivery. J Pharm Pharmacol 53(9):1169–1174

    Article  CAS  PubMed  Google Scholar 

  • Ponvert C, Scheinmann P (2003) Vaccine allergy and pseudo-allergy. Eur J Dermatol 13(1):10–15

    PubMed  Google Scholar 

  • Prausnitz MR (1996) Do high-voltage pulses cause changes in skin structure? J Control Release 40:321–326

    Article  CAS  Google Scholar 

  • Prausnitz MR (2004) Microneedles for transdermal drug delivery. Adv Drug Deliv Rev 56(5):581–587. doi:10.1016/j.addr.2003.10.023. S0169409X03002394[pii]

    Article  CAS  PubMed  Google Scholar 

  • Prausnitz MR, Langer R (2008) Transdermal drug delivery. Nat Biotechnol 26(11):1261–1268. doi:10.1038/nbt.1504nbt.1504 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prausnitz MR, Bose VG, Langer R, Weaver JC (1993) Electroporation of mammalian skin: a mechanism to enhance transdermal drug delivery. Proc Natl Acad Sci U S A 90(22):10504–10508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prausnitz MR, Edelman ER, Gimm JA, Langer R, Weaver JC (1995) Transdermal delivery of heparin by skin electroporation. Biotechnology (N Y) 13(11):1205–1209

    CAS  Google Scholar 

  • Prausnitz MR, Mitragotri S, Langer R (2004) Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov 3(2):115–124. doi:10.1038/nrd1304

    Article  CAS  PubMed  Google Scholar 

  • Prausnitz MR, Mikszta JA, Cormier M, Andrianov AK (2009) Microneedle-based vaccines. Curr Top Microbiol Immunol 333:369–393. doi:10.1007/978-3-540-92165-3_18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rao R, Nanda S (2009) Sonophoresis: recent advancements and future trends. J Pharm Pharmacol 61(6):689–705. doi:10.1211/jpp.61.06.0001

    Article  CAS  PubMed  Google Scholar 

  • Roberts MS (1997) Targeted drug delivery to the skin and deeper tissues: role of physiology, solute structure and disease. Clin Exp Pharmacol Physiol 24(11):874–879

    Article  CAS  PubMed  Google Scholar 

  • Robertson JS, Nicolson C, Harvey R, Johnson R, Major D, Guilfoyle K et al (2011) The development of vaccine viruses against pandemic A(H1N1) influenza. Vaccine 29(9):1836–1843. doi:10.1016/j.vaccine.2010.12.044. S0264-410X(10)01817-7[pii]

    Article  CAS  PubMed  Google Scholar 

  • Ruprecht RM (1999) Live attenuated AIDS viruses as vaccines: promise or peril? Immunol Rev 170:135–149

    Article  CAS  PubMed  Google Scholar 

  • Saurer EM, Flessner RM, Sullivan SP, Prausnitz MR, Lynn DM (2010) Layer-by-layer assembly of DNA- and protein-containing films on microneedles for drug delivery to the skin. Biomacromolecules 11(11):3136–3143. doi:10.1021/bm1009443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaefer H, Lademann J (2001) The role of follicular penetration. A differential view. Skin Pharmacol Appl Skin Physiol 14(Suppl 1):23–27. 56386 [pii]56386

    Article  PubMed  Google Scholar 

  • Schaefer H, Redelmeier TE (1996) Skin barrier, principles of percutaneous absorption. Karger, Basel

    Google Scholar 

  • Schratzberger P, Krainin JG, Schratzberger G, Silver M, Ma H, Kearney M et al (2002) Transcutaneous ultrasound augments naked DNA transfection of skeletal muscle. Mol Ther 6(5):576–583. S152500160290715X [pii]

    Article  CAS  PubMed  Google Scholar 

  • Shah VP, Peck CC, Williams RL (1993) Skin penetration enhancement: clinical pharmacological and regulatory considerations. In: Walters KA, Hadgraft J (eds) Pharmaceutical skin penetration enhancement. Marcel Dekker, New York, pp 417–427

    Google Scholar 

  • Shaker DS, Sloat BR, Le UM, Lohr CV, Yanasarn N, Fischer KA et al (2007) Immunization by application of DNA vaccine onto a skin area wherein the hair follicles have been induced into anagen-onset stage. Mol Ther 15(11):2037–2043. doi:10.1038/sj.mt.6300286. 6300286 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Shedlock DJ, Weiner DB (2000) DNA vaccination: antigen presentation and the induction of immunity. J Leukoc Biol 68(6):793–806

    CAS  PubMed  Google Scholar 

  • Shi Z, Curiel DT, Tang DC (1999) DNA-based non-invasive vaccination onto the skin. Vaccine 17(17):2136–2141. S0264410X98004885 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Sintov AC, Krymberk I, Daniel D, Hannan T, Sohn Z, Levin G (2003) Radiofrequency-driven skin microchanneling as a new way for electrically assisted transdermal delivery of hydrophilic drugs. J Control Release 89(2):311–320. S0168365903001238 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Sloat BR, Kiguchi K, Xiao G, DiGiovanni J, Maury W, Cui Z (2012a) Transcutaneous DNA immunization following waxing-based hair depilation. J Control Release 157(1):94–102. doi:10.1016/j.jconrel.2011.08.038. S0168-3659(11)00652-3[pii]

    Article  CAS  PubMed  Google Scholar 

  • Sloat BR, Tran HK, Cui Z (2012b) Vaccinology: principles and practice, Chap. 21. In: Needle-free jet injection for vaccine administration. Blackwell Publishing Ltd, West Sussex, UK, pp 324–335

    Google Scholar 

  • Slominski A, Paus R, Costantino R (1991) Differential expression and activity of melanogenesis-related proteins during induced hair growth in mice. J Invest Dermatol 96(2):172–179

    Article  CAS  PubMed  Google Scholar 

  • Song JM, Kim YC, Barlow PG, Hossain MJ, Park KM, Donis RO et al (2010a) Improved protection against avian influenza H5N1 virus by a single vaccination with virus-like particles in skin using microneedles. Antiviral Res 88(2):244–247. doi:10.1016/j.antiviral.2010.09.001. S0166-3542(10)00705-9[pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song JM, Kim YC, Lipatov AS, Pearton M, Davis CT, Yoo DG et al (2010b) Microneedle delivery of H5N1 influenza virus-like particles to the skin induces long-lasting B- and T-cell responses in mice. Clin Vaccine Immunol 17(9):1381–1389. doi:10.1128/CVI.00100-10CVI.00100-10 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song JM, Kim YC, O E, Compans RW, Prausnitz MR, Kang SM (2012) DNA vaccination in the skin using microneedles improves protection against influenza. Mol Ther 20(7):1472–1480. doi:10.1038/mt.2012.69mt201269 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoeber B, Liepmann D (2005) Arrays of hollow out-of-plane microneedles for drug delivery. J Microelect Syst 14:472–479

    Article  Google Scholar 

  • Subedi RK, Oh SY, Chun MK, Choi HK (2010) Recent advances in transdermal drug delivery. Arch Pharm Res 33(3):339–351. doi:10.1007/s12272-010-0301-7

    Article  CAS  PubMed  Google Scholar 

  • Sullivan SP, Koutsonanos DG, Del Pilar Martin M, Lee JW, Zarnitsyn V, Choi SO et al (2010) Dissolving polymer microneedle patches for influenza vaccination. Nat Med 16(8):915–920. doi:10.1038/nm.2182nm.2182 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang DC, DeVit M, Johnston SA (1992) Genetic immunization is a simple method for eliciting an immune response. Nature 356(6365):152–154. doi:10.1038/356152a0

    Article  CAS  PubMed  Google Scholar 

  • Tanner T, Marks R (2008) Delivering drugs by the transdermal route: review and comment. Skin Res Technol 14(3):249–260. doi:10.1111/j.1600-0846.2008.00316.xSRT316 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Toll R, Jacobi U, Richter H, Lademann J, Schaefer H, Blume-Peytavi U (2004) Penetration profile of microspheres in follicular targeting of terminal hair follicles. J Invest Dermatol 123(1):168–176. doi:10.1111/j.0022-202X.2004.22717.xJID22717 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Trichur R, Kim S, Zhu X, Suk JW, Hong C-C, Choi J-W et al (2002) Development of plastic microneedles for transdermal interfacing using injection molding techniques. Micro Total Anal Syst 1:395–397

    CAS  Google Scholar 

  • Ulmer JB, Donnelly JJ, Parker SE, Rhodes GH, Felgner PL, Dwarki VJ et al (1993) Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259(5102):1745–1749

    Article  CAS  PubMed  Google Scholar 

  • Van Damme P, Oosterhuis-Kafeja F, Van der Wielen M, Almagor Y, Sharon O, Levin Y (2009) Safety and efficacy of a novel microneedle device for dose sparing intradermal influenza vaccination in healthy adults. Vaccine 27(3):454–459. doi:10.1016/j.vaccine.2008.10.077. S0264-410X(08)01451-5[pii]

    Article  PubMed  Google Scholar 

  • van der Maaden K, Jiskoot W, Bouwstra J (2012) Microneedle technologies for (trans)dermal drug and vaccine delivery. J Control Release 161(2):645–655. doi:10.1016/j.jconrel.2012.01.042. S0168-3659(12)00074-0[pii]

    Article  PubMed  CAS  Google Scholar 

  • Vanbever R, Langers G, Montmayeur S, Preat V (1998) Transdermal delivery of fentanyl: rapid onset of analgesia using skin electroporation. J Control Release 50(1–3):225–235. S0168-3659(97)00147-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Vandermeulen G, Staes E, Vanderhaeghen ML, Bureau MF, Scherman D, Preat V (2007) Optimisation of intradermal DNA electrotransfer for immunisation. J Control Release 124(1–2):81–87. doi:10.1016/j.jconrel.2007.08.010. S0168-3659(07)00420-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Vemulapalli V, Yang Y, Friden PM, Banga AK (2008) Synergistic effect of iontophoresis and soluble microneedles for transdermal delivery of methotrexate. J Pharm Pharmacol 60(1):27–33. doi:10.1211/jpp.60.1.0004

    Article  CAS  PubMed  Google Scholar 

  • Verbaan FJ, Bal SM, van den Berg DJ, Groenink WH, Verpoorten H, Luttge R et al (2007) Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin. J Control Release 117(2):238–245. doi:10.1016/j.jconrel.2006.11.009. S0168-3659(06)00601-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Vogt A, Combadiere B, Hadam S, Stieler KM, Lademann J, Schaefer H et al (2006) 40 nm, but not 750 or 1,500 nm, nanoparticles enter epidermal CD1a + cells after transcutaneous application on human skin. J Invest Dermatol 126(6):1316–1322. doi:10.1038/sj.jid.5700226. 5700226 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Vogt A, Mahe B, Costagliola D, Bonduelle O, Hadam S, Schaefer G et al (2008) Transcutaneous anti-influenza vaccination promotes both CD4 and CD8 T cell immune responses in humans. J Immunol 180(3):1482–1489. 180/3/1482 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Lu J, Ly SY, Vuki M, Tian B, Adeniyi WK et al (2000) Lab-on-a-Cable for electrochemical monitoring of phenolic contaminants. Anal Chem 72(11):2659–2663

    Article  CAS  PubMed  Google Scholar 

  • Watabe S, Xin KQ, Ihata A, Liu LJ, Honsho A, Aoki I et al (2001) Protection against influenza virus challenge by topical application of influenza DNA vaccine. Vaccine 19(31):4434–4444. S0264-410X(01)00194-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Weldon WC, Martin MP, Zarnitsyn V, Wang B, Koutsonanos D, Skountzou I et al (2011) Microneedle vaccination with stabilized recombinant influenza virus hemagglutinin induces improved protective immunity. Clin Vaccine Immunol 18(4):647–654. doi:10.1128/CVI.00435-10CVI.00435-10 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widera G, Johnson J, Kim L, Libiran L, Nyam K, Daddona PE et al (2006) Effect of delivery parameters on immunization to ovalbumin following intracutaneous administration by a coated microneedle array patch system. Vaccine 24(10):1653–1664. doi:10.1016/j.vaccine.2005.09.049. S0264-410X(05)01015-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Williams AC, Barry BW (2004) Penetration enhancers. Adv Drug Deliv Rev 56(5):603–618. doi:10.1016/j.addr.2003.10.025. S0169409X03002412[pii]

    Article  CAS  PubMed  Google Scholar 

  • Wosicka H, Cal K (2010) Targeting to the hair follicles: current status and potential. J Dermatol Sci 57(2):83–89. doi:10.1016/j.jdermsci.2009.12.005. S0923-1811(09)00367-3[pii]

    Article  CAS  PubMed  Google Scholar 

  • Xiao G, Li X, Kumar A, Cui Z (2012) Transcutaneous DNA immunization following waxing-based hair depilation elicits both humoral and cellular immune responses. Eur J Pharm Biopharm 82(1):212–217. doi:10.1016/j.ejpb.2012.06.012. S0939-6411(12)00199-3[pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Xu B, Gao Y (2005) Controlled transdermal delivery of model drug compounds by MEMS microneedle array. Nanomedicine 1(2):184–190. doi:10.1016/j.nano.2005.03.001. S1549-9634(05)00054-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Zahn JD (2004) Microneedle insertion force reduction using vibratory actuation. Biomed Microdevices 6(3):177–182. doi:10.1023/B:BMMD.0000042046.07678.2e5277260 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Chung WG, Sloat BR, Lohr CV, Weiss R, Rodriguez BL et al (2011) The extent of the uptake of plasmid into the skin determines the immune responses induced by a DNA vaccine applied topically onto the skin. J Pharm Pharmacol 63(2):199–205. doi:10.1111/j.2042-7158.2010.01219.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Wang F, Yang F, Wang Y, Zhang X, Sun S (2010) Augmented humoral and cellular immune response of hepatitis B virus DNA vaccine by micro-needle vaccination using Flt3L as an adjuvant. Vaccine 28(5):1357–1362. doi:10.1016/j.vaccine.2009.11.006. S0264-410X(09)01754-X[pii]

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Zarnitsyn VG, Ye L, Wen Z, Gao Y, Pan L et al (2009) Immunization by vaccine-coated microneedle arrays protects against lethal influenza virus challenge. Proc Natl Acad Sci U S A 106(19):7968–7973. doi:10.1073/pnas.08126521060812652106 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengrong Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kumar, A., Xu, Y., Cui, Z. (2017). Cutaneous DNA Immunization: Enhancing Penetration by Hair Follicle Modification or Microneedle Application. In: Dragicevic, N., I. Maibach, H. (eds) Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53273-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53273-7_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53271-3

  • Online ISBN: 978-3-662-53273-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics