Skip to main content

Standards for Soil Biodegradable Plastics

  • Chapter
  • First Online:
Soil Degradable Bioplastics for a Sustainable Modern Agriculture

Abstract

The main standard test methods for biodegradation of plastics in soil (ISO 17556, ASTM D5988, NF U52-001 and UNI 11462) determine the rate of biodegradation under normalized conditions. The standard testing procedures are designed to determine the inherent biodegradability of plastics in soil under optimal controlled conditions that may not be necessarily representative of any specific environmental conditions but they ensure repeatability. The normalized conditions defined by the standard test methods differ in several aspects. A comparative analysis is presented. Besides the biodegradation test methods, pass levels and a time frame also need to be defined in order to determine whether bio-based products will biodegrade sufficiently under soil conditions. There is currently no European or international specification that defines criteria for biodegradation of bio-based products in soil. Criteria for biodegradation of materials used in agriculture and horticulture are only defined in standard specifications NF U52-001 and UNI 11462, together with criteria for environmental safety. However, the evaluation of the biodegradation in soil is not obligatory in the French specification. The main requirements for mulching films are: (1) biodegradation at least 90% within 24 months; (2) material shall not contain heavy metal, no ecotoxicological effects. The same requirements have been adopted by the USDA-AMS National Organic Program (NOP) for mulching films allowed for organic crop production. The constraints, gaps, and limitations of existing relevant testing methods and the new developments are identified and analyzed in this chapter. Functional barriers with respect to standards and labeling for soil biodegradable plastics are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hopewell J, Dvorak R, Kosior E (2009) Plastics recycling: challenges and opportunities. Philos Trans R Soc London [Biol] 364:2115–2126

    Article  CAS  Google Scholar 

  2. Plastics Europe (2013) Plastics—the Facts 2013, an analysis of European latest plastics production, demand and waste data. Available via; http://www.plasticseurope.org/documents/document/20131014095824-final_plastics_the_facts_2013_published_october2013.pdf. Accessed 22 Oct 2015

  3. European Bioplastics. Available at: http://www.europeanbioplastics.org/. Accessed 15 Sep 2013

  4. Briassoulis D, Hiskakis M, Scarascia G, Picuno P, Delgado C, Dejean C (2010) Labeling scheme for agricultural plastic wastes in Europe. Qual Assur Saf Crop 2(2):93–104

    Article  Google Scholar 

  5. Shogren RL, Hochmuth RC (2004) Field evaluation of watermelon grown on paper-polymerized vegetable oil mulches. HortScience 39:1588–1591

    Google Scholar 

  6. Briassoulis D, Babou E, Hiskakis M, Scarascia G, Picuno P, Guarde D, Dejean C (2013) Review, mapping and analysis of the agricultural plastic waste generation and consolidation in Europe. Waste Manage Res 31:1262–1278

    Article  Google Scholar 

  7. Washington State University Extension (2013) Using biodegradable plastics as agricultural mulches, fact sheet FS103E, Washington State University, WSU Extension. Available via; http://pubs.wsu.edu. Accessed 28 Apr 2014

  8. Briassoulis D (2007) Analysis of the mechanical and degradation performance of optimised agricultural biodegradable films. Polym Deg Stab 92(6):1115–1132

    Article  CAS  Google Scholar 

  9. Degli Innocenti F (2005) Biodegradation behaviour of polymers in the soil. In: Bastioli C (ed) Handbook of biodegradable polymers. RAPRA Technology Limited Shawbury, Shrewsbury, pp 57–102

    Google Scholar 

  10. Degli Innocenti F (2011) The role of standards for biodegradable plastics. Bioplastics Mag 4:36–38

    Google Scholar 

  11. De Wilde B (2014) International and national norms on biodegradability and certification procedures. In: Bastioli C (ed) Handbook of biodegradable polymers, 2nd edn. Smithers Rapra Shawbury, Shrewsbury, pp 139–174

    Google Scholar 

  12. ISO/IEC Guide 2 (1996) Standardization and related activities—general vocabulary, definition 1.1. International Organization for Standardization, Switzerland

    Google Scholar 

  13. EN 45020 (2007) Standardisation and linked activities—general Vocabulary

    Google Scholar 

  14. Degli Innocenti F (2003) Biodegradability and compostability—the international norms. In: Chiellini E, Solaro R (eds) Biodegradable polymers. Plastics Kluwer Academic Plenum Publishers, New York, pp 33–45

    Google Scholar 

  15. ISO 17556 (2012) Plastics—determination of the ultimate aerobic biodegradability of plastic materials in soil by measuring the oxygen demand in a respirometer or the amount of carbon dioxide evolved. International Organization for Standardization, Switzerland

    Google Scholar 

  16. ASTM D 5988 (2012) Standard test method for determining aerobic biodegradation in soil of plastic materials. ASTM International, USA

    Google Scholar 

  17. EN ISO 17556 (2012) Plastics—determination of the ultimate aerobic biodegradability of plastic materials in soil by measuring the oxygen demand in a respirometer or the amount of carbon dioxide evolved. International Organization for Standardization, Switzerland

    Google Scholar 

  18. ISO 11266 (1994) Soil quality—guidance on laboratory testing for biodegradation of organic chemicals in soil under aerobic conditions. International Organization for Standardization, Switzerland

    Google Scholar 

  19. KBBPPS Project (2013) Deliverable N° 6.2: draft biodegradability standard, FP7 Programme (FP7-KBBE-2013- 312060). Available via; http://www.biobasedeconomy.eu/research/kbbpps/. Accessed 21 July 2016

  20. Briassoulis D, Mistriotis A, Mortier N, De Wilde B (2014) Standard testing methods & specifications for biodegradation of bio-based materials in soil—a comparative analysis. In: Proceedings international conference of agricultural engineering, Ref: C0668, Zurich, 06–10.07.2014. Available via; http://www.geyseco.es/geystiona/adjs/comunicaciones/304/C06680001.pdf. Accessed 21 July 2016

  21. Briassoulis D, Dejean C (2010) Critical review of norms and standards for biodegradable agricultural plastics, part Ι. Biodegradation in soil. J Polym Environ 18(3):384–400

    Article  CAS  Google Scholar 

  22. De Wilde B, Mortier N, Verstichel S, Briassoulis D, Babou M, Mistriotis A, Hiskakis M (2013) Report on current relevant biodegradation and ecotoxicity standards, Deliverable D1 of project: knowledge based bio-based products (KBBPPS; FP7-KBBE-2013-312060), Ghent. Available via; http://www.kbbpps.eu. Accessed 31 Jan 2013

  23. ISO 9408 (1999) Water quality—evaluation of ultimate aerobic biodegradability of organic compounds in aqueous medium by determination of oxygen demand in a closed respirometer. International Organization for Standardization, Switzerland

    Google Scholar 

  24. NF U52-001 (2005) Biodegradable materials for use in agriculture and horticulture-mulching products-requirements and test methods. Association Française de Normalisation

    Google Scholar 

  25. UNI 11462 (2012) Plastic materials biodegradable in soil—types, requirements and test methods. Italian Organization for Standardization (UNI)

    Google Scholar 

  26. ISO 11269-2 (2012) Soil quality—determination of the effects of pollutants on soil flora—part 2: effects of contaminated soil on the emergence and early growth of higher plants. International Organization for Standardization, Switzerland

    Google Scholar 

  27. FD X 31-251 (1994) Qualité du sol – Effets des polluants vis-à-vis des vers déterre (Eisenia) (fetida). Partie 1: détermination de la toxicité aigue en utilisant des substrats de sol artificiel. Statut: fascicule de doc. AFNOR 11 p

    Google Scholar 

  28. NF T 90-375 (1998) Qualité de l’eau - Détermination de la toxicité chronique des eaux par l’inhibition de la croissance de l’algue d’eau douce Pseudokirchneriella subcapitata (Selenastrum capriconutum). AFNOR. 13 p

    Google Scholar 

  29. UNI 11495 (2013) Biodegradable thermoplastic materials for use in agriculture and horticulture—mulching films—requirements and test methods. Italian Organization for Standardization (UNI)

    Google Scholar 

  30. UNI 10780 (1998) Compost—classification, requirements and use criteria. Italian Organization for Standardization (UNI)

    Google Scholar 

  31. ISO 6341 (2012) Water quality—determination of the inhibition of the mobility of Daphnia Magna Straus (Cladocera, Crustacea)—acute toxicity test. International Organization for Standardization, Switzerland

    Google Scholar 

  32. Belgian Royal Decree (2008) Decree specifying the norms that products should meet to be compostable or biodegradable. Official Journal of 28 October 2008, Effective in July 2009

    Google Scholar 

  33. OECD (1984) Test No. 207: earthworm, acute toxicity tests, OECD guidelines for the testing of chemicals (Section 2). OECD Publishing, Paris. doi:http://dx.doi.org/10.1787/9789264070042-en

  34. OECD (2006) Test No. 208: Terrestrial plant test: seedling emergence and seedling growth test, OECD guidelines for the testing of chemicals (Section 2). OECD Publishing, Paris. doi:http://dx.doi.org/10.1787/9789264070066-en

  35. OECD (2004) Test No. 222: Earthworm reproduction test (Eisenia fetida/Eisenia andrei), OECD guidelines for the testing of chemicals (Section 2). OECD Publishing, Paris. doi:http://dx.doi.org/10.1787/9789264070325-en

  36. OECD (2010) Test No. 317: Bioaccumulation in terrestrial oligochaetes, OECD guidelines for the testing of chemicals (Section 3). OECD Publishing, Paris. doi:http://dx.doi.org/10.1787/9789264090934-en

  37. ISO 11268-1 (2012) Soil quality—effects of pollutants on earthworms—part 1: determination of acute toxicity to Eisenia fetida/Eisenia Andrei. International Organization for Standardization, Switzerland

    Google Scholar 

  38. ISO 22030 (2005) Soil quality—biological methods—chronic toxicity in higher plants. International Organization for Standardization, Switzerland

    Google Scholar 

  39. ASTM E1676 (2012) Standard guide for conducting laboratory soil toxicity or bioaccumulation tests with the Lumbricid Earthworm Eisenia Fetida and the Enchytraeid Potworm Enchytraeus albidus. ASTM International, USA

    Google Scholar 

  40. European Commission (DG Environment) (2011) Plastic waste in the environment, Final Report April 2011. Available via; http://ec.europa.eu/environment/waste/studies/pdf/plastics.pdf. Accessed 21 July 2016

  41. AIB-VINÇOTTE International S.A./N.V, Member of the Group AIB-VINÇOTTE. Available via; http://www.vincotte-certification.com/en/home/. Accessed 21 July 2016

  42. Agricultural Marketing Service (2016) United States Department of Agriculture. Electronic Code of Federal Regulations, PART 205—National Organic Program. Available via; https://www.ams.usda.gov/rules-regulations/organic/national-list. Accessed 21 July 2016

  43. Corbin et al (2014). Current and future prospects for biodegradable plastic Mulch in certified organic production systems—eXtension, Organic Agriculture. Available via; http://www.extension.org/…7951/current-and-future-prospects-for-biodegradable-plastic-mulch-in-certified-organic-production-systems. Accessed 28 Apr 2014

  44. Agricultural Marketing Service (2013) USDA. National Organic Program; Proposed: amendments to the national list of allowed and prohibited substances (crops and processing), 7 CFR Part 205, Document Number AMS–NOP–13–0011, NOP–13–01PR. Available via; http://www.gpo.gov/fdsys/pkg/FR-2013-08-22/pdf/2013-20476.pdf. Accessed 21 Jul 2016

  45. Anzalone A, Cirujeda A, Aibar J, Pardo G, Zaragoza C (2010) Effect of biodegradable mulch materials on weed control in processing tomatoes. Weed Technol 24(3):369–377

    Article  Google Scholar 

  46. Society of the Plastics Industry Bioplastics Council (2010) Position paper on oxo-biodegradables and other degradable additives. Available via; http://spi.files.cms-plus.com/about/BPC/SPI%20Bioplastic%20Council%20Bioplastics%20Position%20Paper%20on%20OXO-Biodegradable%20Plastic-FINAL.pdf. Accessed 22 Oct 2015

  47. Scott G, Wiles DM (2001) Programmed-life plastics from polyolefins: a new look at sustainability. Biomacromolecules 2001(2):615–622

    Google Scholar 

  48. Griffin GJL (1974) Biodegradable fillers in thermoplastics. Adv Chem 134:159–170

    Article  CAS  Google Scholar 

  49. Deconinck S, de Wilde B (2013) Benefits and challenges of bio- and oxo-degradable plastics, a comparative literature study, OWS, DSL-1, Aug-09-2013. Available via; http://ows.be/wp-content/uploads/2013/10/Executive-summary1.pdf. Accessed 22 Oct 2015

  50. Deconinck S, de Wilde B (2014) Review of information on enzyme-mediated degradable plastics, OWS, EUBR-2, May-10-2014. Available via; http://ows.be/wp-content/uploads/2014/08/Report_Rev01.pdf. Accessed 22 Oct 2015

  51. Kyrikou I, Briassoulis D (2007) Biodegradation of agricultural plastic films—a critical review. J Polym Environ 15(2):125–150

    Article  CAS  Google Scholar 

  52. Briassoulis D, Babou E, Hiskakis M, Kyrikou I (2015) Analysis of long term degradation behaviour of polyethylene mulching films with pro-oxidants under real cultivation and soil burial conditions. Environ Sci Pollut Res 22:2584–2598. doi:10.1007/s11356-014-3464-9

    Article  CAS  Google Scholar 

  53. Briassoulis D, Babou E, Hiskakis M, Kyrikou I (2015) Degradation in soil behaviour of artificially aged polyethylene films with pro-oxidants. J Appl Polym Sci 132(30):1–20. doi:10.1002/app.42289

    Article  CAS  Google Scholar 

  54. CEN/TR 15822 (2009) Plastics—biodegradable plastics in or on soil—recovery, disposal and related environmental issues, Technical Report, Technical Committee CEN/TC 249, European Committee for Standardization

    Google Scholar 

  55. ISO 14855-1 (2012) Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions—method by analysis of evolved carbon dioxide—part 1: general method. International Organization for Standardization, Switzerland

    Google Scholar 

  56. prEN 17033 (2016) (E) Biodegradable mulch films for use in agriculture and horticulture—requirements and test methods European Committee for Standardization, Brussels, Belgium Edition (This document is currently submitted to the CEN Enquiry)

    Google Scholar 

  57. EN 13655 (2002) Plastics—mulching thermoplastic films for use in agriculture and horticulture, European standard. European Committee for Standardization, Brussels, Belgium

    Google Scholar 

  58. ASTM D883 (2012) Standard terminology relating to plastics, ASTM International, West Conshohocken, PA, 2012. www.astm.org

  59. Wiles DM, Scott G (2006) Polyolefins with controlled environmental degradability. Polym Degrad Stab 91(7):1581–1592

    Article  CAS  Google Scholar 

  60. Jakubowicz I (2003) Evaluation of degradability of biodegradable polyethylene (PE). Polym Degrad Stab 80(1):39–43

    Article  CAS  Google Scholar 

  61. Scott G, Wiles DM (2001) Programmed-life plastics from polyolefins: a new look at sustainability. Biomacromolecules 2(3):615–622

    Article  CAS  Google Scholar 

  62. Karlsson S, Albertsson AC (1998) Biodegradable polymers and environmental interaction. Polym Eng Sci 38:1251–1253

    Article  CAS  Google Scholar 

  63. Matsumaga M, Whitney PJ (2000) Surface changes brought about by corona discharge treatment of polyethylene film and the effect on subsequent microbial colonisation. Polym Deg Stab 70:325–332

    Article  Google Scholar 

  64. Broska R, Rychly J (2001) Double stage oxidation of polyethylene as measured by chemiluminescence. Polym Deg Stab 72:271–278

    Article  CAS  Google Scholar 

  65. Bonhomme S, Cuer A, Delort AM, Lemaire J, Sancelme M, Scott G (2003) Environmental biodegradation of polyethylene. Polym Deg Stab 81(3):441–452

    Article  CAS  Google Scholar 

  66. Singh B, Sharma N (2008) Mechanistic implications of plastic degradation. Polym Degrad Stab 93(3):561–584

    Article  CAS  Google Scholar 

  67. Feuilloley P (2004) Ce plastique faussement biodegradable. La Recherche 374:52–54

    Google Scholar 

  68. Fritz J (2003) Strategies for detecting ecotoxicologic effect of biodegradable polymers in agricultural application. Macromol Symp 197:397–409

    Article  CAS  Google Scholar 

  69. Thompson RC, Olsen Y, Mitchell RP et al (2004) Lost at sea: where is all the plastic? Science 304(5672):838. doi:10.1126/science.1094559

    Article  CAS  Google Scholar 

  70. Stevens G (2010) Bioplastic standards 101, green plastics. Available via; http://green-plastics.net/news/45-science. Access 28 Apr 2014

  71. De Wilde B (2002) Standardization activities related to measuring biodegradability of plastics in soil and marine conditions. Paper presented at the Congress Industrial Applications of Bio-Plastics 2002, York, UK, 3–5 Feb 2002

    Google Scholar 

Download references

Acknowledgments

Part of this work is based on the relevant state-of-the-art review carried out within the framework of the KBBPPS project supported by the European Commission through the FP7 Programme (FP7-KBBE-2013-312060). Special thanks are due to Nike Mortier and Bruno De Wilde (OWS) and to Antonis Mistriotis (AUA), for contributing to the corresponding work of KBBPPS [19, 21].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demetres Briassoulis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Briassoulis, D., Degli Innocenti, F. (2017). Standards for Soil Biodegradable Plastics. In: Malinconico, M. (eds) Soil Degradable Bioplastics for a Sustainable Modern Agriculture. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54130-2_6

Download citation

Publish with us

Policies and ethics