Skip to main content

LiDAR-Sensorsystem für automatisiertes und autonomes Fahren

  • Chapter
Automobil-Sensorik 2

Zusammenfassung

Als integraler Bestandteil von automatisiert und selbstfahrenden Autos kann ein LiDAR-Sensorsystem zur Abstands- und Geschwindigkeitsmessung sowie zur Klassifizierung von Objekten im Straßenverkehr eingesetzt werden. Neben den optischen Sensoren kommt den elektronischen Schaltungskomponenten eine besondere Bedeutung zu. Sie müssen die Anforderungen der funktionalen Sicherheit nach ASIL Level-B/D (ISO 26262) erfüllen und definieren die Präzision der Messtechnik sowie den Kostenrahmen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Goldstein, B. S., Dalrymple, G. F., “Galium Arsenid Injection Laser Radar”, Proceedings of the IEEE, Vol. 55, No.2, February, 1967.

    Article  Google Scholar 

  2. Kolawole, M., “Radar Systems, Peak Detection and Tracking”, Newnes (Elsevier Science), 2002.

    Chapter  Google Scholar 

  3. Kurti, S., Kostamovaara, J., “An Integrated Laser Radar Receiver Channel Utilizing a Time-Domain Walk Error Compensation Scheme”, IEEE Transactions on Instrumentation and Measurement, Vol. 60, No. 1, January 2011.

    Google Scholar 

  4. ISO 26262: „Automotive Functional Safety“, http://www.iso.org

  5. Kasturi, A., Milanovic, V., Atwood, B., Yang, J., “UAV-Borne LiDAR with MEMS Mirror Based Scanning Capability”, SPIE Defense and Commercial Sensing Conference, April 20th, 2016.

    Google Scholar 

  6. Sze, S.M., Kwok, K. “Physics of Semiconductor Devices”, Jon Wiley & Sons, Inc., 2007.

    Google Scholar 

  7. Winter, H., “Kamerabasierte Sensorik für Fahrerassistenzsysteme”, 3rd Leibniz Conference of Advanced Science - Sensorsystems, 2006.

    Google Scholar 

  8. Hänsler, E., „Statistische Signale. Grundlagen und Anwendungen“ Springer Verlag, 2010.

    Google Scholar 

  9. picco Technology, „Einführung Sampling-Oszilloskope“, PSE-PRIGGEN Special Electronic, 2010.

    Google Scholar 

  10. Texas Instruments, “LiDAR Pulsed Time-of-Flight Reference Design using High-Speed Data Converters”, TIDUC73B–November 2016–Revised August 2017.

    Google Scholar 

  11. Leser, R.J., Salzman, J.A. “Ligth-Detecetion Electronics for Rama LiDAR”, Lewis Reasearch Center Cleveland, National Aeronautics and Space Administration, 1972.

    Google Scholar 

  12. McCormack, P., Kwok, K. “Industrial RADAR/LiDAR System”, ECE, National Semiconductor, 2005.

    Google Scholar 

  13. Kawahara, K., Ikeda H., Mizuno, M., “Development of Pulse Detection IC for Space LiDAR”, Jon Wiley & Sons, Inc. Trans. JSASS Aerospace Tech. Japan, Vol. 8, No. ists27, pp. Td_17-Td_22, 2010.

    Article  Google Scholar 

  14. Ito, K., et al., “System Design and Performance Characterization of a MEMS-Based Laser”, IEEE Photonics Journal, Volume 5, Number 2, 2013.

    Article  Google Scholar 

  15. ORTEC AN-52, “Pico-Second Timing Analyzer Application”, Advanced Measurement Technology, Inc., 2007.

    Google Scholar 

  16. Jansson, J., Koskinen, V., Mäntyniemi, A., Kostamovaara, J., “A Multi-Channel High Precision CMOS Time-to-Digital Converter for Laser Scanner Based Perception Systems”, Academy of Finnland, 2011.

    Google Scholar 

  17. Xu, Z., Miyahara, M. Matsuzawa, A., “Picoseconds Resolution Time-to-Digital Converter Using GM_C Integrator and SAR-ADC”, IEEE Transactions on Nuclera Science, Vol. 61, No.2, April 2014.

    Google Scholar 

  18. Henzler, S., “Time-to-Digital Converters”, Springer Series in Advanced Microelectronics 29, Springer Science+Business Media B.V., 2010.

    Book  Google Scholar 

  19. Katsibas, T., et al., “Real-Time Signal Acquisition, High Speed Processing and Frequency Analysis in Modern Air Data Measurement Instruments”, Recent Advances in Signal Processing, ISBN 978-953-307-002-5, 2009.

    Google Scholar 

  20. Kalden, P., Sterna, E. “Development of a Low-Cost Laser Rangefinder (LiDAR)”, Master Thesis in Systems, Control and Mechatronics, Chalmers University of Technology, Gothenburg, Sweden, 2015.

    Google Scholar 

  21. Mimeault, Y., Leddartech Inc., Quebec (CA), “Detection and Ranging Methods and Systems”, Patent No. US 8,310,655 B2, Nov. 13, 2012.

    Google Scholar 

  22. Kolawole, M., “Radar Systems, Peak detection and Tracking”, Elsevier Science, ISBN 0 7506 57731, 2002.

    Google Scholar 

  23. Gitelink, J., et al., “Development of Advanced Driver Assistance Systems with Vehicle Hardware-in-the-Loop Simulations”, Vehicle System Dynamics, Vol. 44, No. 7, pp. 569-590, July 2006.

    Article  Google Scholar 

  24. Gagnon, Frederic, “Solid-State LiDAR: Enabling High-Volume Optical Sensor Deployments in its Applications”, Presentation, Joint Symposium on Managed Lanes & AET, Dallas, TC, July 16-18, 2017.

    Google Scholar 

  25. Lawrenz, W., Obermöller, N. “CAN: Controller Area Network: Grundlagen, Design Anwendungen, Testtechnik”, VDE Verlag, May 31, 2011.

    Google Scholar 

  26. http://www.aecouncil.com/AECDocuments.html.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kernhof, J., Leuckfeld, J., Tavano, G. (2018). LiDAR-Sensorsystem für automatisiertes und autonomes Fahren. In: Tille, T. (eds) Automobil-Sensorik 2. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56310-6_2

Download citation

Publish with us

Policies and ethics