Skip to main content

Liquid Cell Electron Microscopy for the Study of Growth Dynamics of Nanomaterials and Structure of Soft Matter

  • Chapter
  • First Online:
In-situ Characterization Techniques for Nanomaterials

Abstract

This chapter lays out experimental evidence from the field of liquid cell electron microscopy, related concepts from radiation chemistry, and models explaining particle growth, diffusion, and electron charging during experiments. We present an overview of main results regarding particle growth, observation of low contrast systems such as proteins, and in-operando experiments using nonaqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor KA, Glaeser RM (2008) Retrospective on the early development of cryoelectron microscopy of macromolecules and a prospective on opportunities for the future. J Struct Biol 163:214–223

    Article  CAS  Google Scholar 

  2. Taylor KA, Glaeser RM (1974) Electron-diffraction of frozen, hydrayed protein crystals. Science 186:1036–1037

    Article  CAS  Google Scholar 

  3. Dubochet J, Adrian M, Chang JJ, Homo JC, Lepault J, McDowall AW, Schultz P (1988) Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21:129–228

    Article  CAS  Google Scholar 

  4. Parsons DF (1974) Structure of wet specimens in electron microscopy. Science 186:407–414

    Article  CAS  Google Scholar 

  5. Abrams IM, McBain JW (1944) A closed cell for electron microscopy. Science 100:273–274

    Article  CAS  Google Scholar 

  6. Williamson MJ, Tromp RM, Vereecken PM, Hull R, Ross FM (2003) Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat Mater 2:532–536

    Article  CAS  Google Scholar 

  7. Peckys DB, Veith GM, Joy DC, de Jonge N (2009) Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope. PLoS One 4:e8214

    Article  Google Scholar 

  8. Ross FM (2015) Opportunities and challenges in liquid cell electron microscopy. Science 350:aaa9886

    Article  Google Scholar 

  9. Jonge N, Ross FM (2011) Electron microscopy of specimens in liquid. Nat Nanotechnol 6:695

    Article  Google Scholar 

  10. Woehl TJ, Prozorov T (2015) The mechanisms for nanoparticle surface diffusion and chain self-assembly determined from real-time nanoscale kinetics in liquid. J Phys Chem C 119:21261–21269

    Article  CAS  Google Scholar 

  11. Woehl TJ, Jungjohann KL, Evans JE, Arslan I, Ristenpart WD, Browning ND (2013) Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials. Ultramicroscopy 127:53–63

    Article  CAS  Google Scholar 

  12. Woehl TJ, Evans JE, Arslan L, Ristenpart WD, Browning ND (2012) Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano 6:8599–8610

    Article  CAS  Google Scholar 

  13. Abellan P, Mehdi BL, Parent LR, Gu M, Park C, Xu W, Zhang YH, Arslan I, Zhang JG, Wang CM, Evans JE, Browning ND (2014) Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy. Nano Lett 14:1293–1299

    Article  CAS  Google Scholar 

  14. Abellan P, Parent LR, Al Hasan N, Park C, Arslan I, Karim AM, Evans JE, Browning ND (2016) Gaining control over radiolytic synthesis of uniform sub-3-nanometer palladium nanoparticles: use of aromatic liquids in the electron microscope. Langmuir 32:1468–1477

    Article  CAS  Google Scholar 

  15. Woehl TJ, Abellan P (2016) Defining the radiation chemistry during liquid cell electron microscopy to enable visualization of nanomaterial growth and degradation dynamics. J Microsc 265:135

    Article  Google Scholar 

  16. Zheng HM, Smith RK, Jun YW, Kisielowski C, Dahmen U, Alivisatos AP (2009) Observation of single colloidal platinum nanocrystal growth trajectories. Science 324:1309–1312

    Article  CAS  Google Scholar 

  17. Verch A, Pfaff M, de Jonge N (2015) Exceptionally slow movement of gold nanoparticles at a solid/liquid interface investigated by scanning transmission electron microscopy. Langmuir 31:6956–6964

    Article  CAS  Google Scholar 

  18. Powers AS, Liao H-G, Raja SN, Bronstein ND, Alivisatos AP, Zheng H (2016) Tracking nanoparticle diffusion and interaction during self-assembly in a liquid cell. Nano Lett 17:15

    Article  Google Scholar 

  19. Liu YZ, Lin XM, Sun YG, Rajh T (2013) In situ visualization of self-assembly of charged gold nanoparticles. J Am Chem Soc 135:3764–3767

    Article  CAS  Google Scholar 

  20. Grogan JM, Rotkina L, Bau HH (2011) In situ liquid-cell electron microscopy of colloid aggregation and growth dynamics. Phys Rev E 83:061405

    Article  Google Scholar 

  21. Unocic RR, Sacci RL, Brown GM, Veith GM, Dudney NJ, More KL, Walden FS, Gardiner DS, Damiano J, Nackashi DP (2014) Quantitative electrochemical measurements using in situ ec-S/TEM devices. Microsc Microanal 20:452–461

    Article  CAS  Google Scholar 

  22. Dukes MJ, Peckys DB, de Jonge N (2010) Correlative fluorescence microscopy and scanning transmission electron microscopy of quantum-dot-labeled proteins in whole cells in liquid. ACS Nano 4:4110–4116

    Article  CAS  Google Scholar 

  23. Peckys DB, Mazur P, Gould KL, de Jonge N (2011) Fully hydrated yeast cells imaged with electron microscopy. Biophys J 100:2522–2529

    Article  CAS  Google Scholar 

  24. Woehl TJ, Kashyap S, Firlar E, Perez-Gonzalez T, Faivre D, Trubitsyn D, Bazylinski DA, Prozorov T (2014) Correlative electron and fluorescence microscopy of magnetotactic bacteria in liquid: toward in vivo imaging. Sci Rep 4:6854

    Article  CAS  Google Scholar 

  25. Gilmore BL, Showalter SP, Dukes MJ, Tanner JR, Demmert AC, McDonald SM, Kelly DF (2013) Visualizing viral assemblies in a nanoscale biosphere. Lab Chip 13:216–219

    Article  CAS  Google Scholar 

  26. Varano AC, Rahimi A, Dukes MJ, Poelzing S, McDonald SM, Kelly DF (2015) Visualizing virus particle mobility in liquid at the nanoscale. Chem Commun 51:16176–16179

    Article  Google Scholar 

  27. Abellan P, Woehl TJ, Parent LR, Browning ND, Evans JE, Arslan I (2014) Factors influencing quantitative liquid (scanning) transmission electron microscopy. Chem Commun 50:4873–4880

    Article  CAS  Google Scholar 

  28. Alloyeau D, Dachraoui W, Javed Y, Belkahla H, Wang G, Lecoq H, Ammar S, Ersen O, Wisnet A, Gazeau F, Ricolleau C (2015) Unravelling kinetic and thermodynamic effects on the growth of gold nanoplates by liquid transmission electron microscopy. Nano Lett 15:2574

    Article  CAS  Google Scholar 

  29. Talmon Y (1982) Thermal and radiation-damage to frozen hydrated speciments. J Microsc Oxford 125:227–237

    Article  Google Scholar 

  30. Jaffe JS, Glaeser RM (1984) Preparation of frozen-hydrated speciments for high-resolution electron-microscopy. Ultramicroscopy 13:373–377

    Article  CAS  Google Scholar 

  31. Glaeser RM (1971) Limitations to significant information in biological electron microscopy as a result of radiation damage. J Ultrastruct Res 36:466–482

    Article  CAS  Google Scholar 

  32. Glaeser RM, Taylor KA (1978) Radiation-damage relative to transmission electron-microscopy of biological specimans at low-temperature – review. J Microsc Oxford 112:127–138

    Article  CAS  Google Scholar 

  33. Talmon Y, Adrian M, Dubochet J (1986) Electron-beam radiation-damage to organic inclusions in vitreous, cubic, and hexagonal ice. J Microsc Oxford 141:375–384

    Article  CAS  Google Scholar 

  34. Dubochet J, Lepault J, Freeman R, Berriman JA, Homo JC (1982) Electron-microscopy of frozen water and aqueous-solutions. J Microsc Oxford 128:219–237

    Article  Google Scholar 

  35. Chee SW, Baraissov Z, Loh ND, Matsudaira PT, Mirsaidov U (2016) Desorption-mediated motion of nanoparticles at the liquid-solid interface. J Phys Chem C 120:20462–20470

    Article  CAS  Google Scholar 

  36. Park J, Elmlund H, Ercius P, Yuk JM, Limmer DT, Chen Q, Kim K, Han SH, Weitz DA, Zettl A, Alivisatos AP (2015) 3D structure of individual nanocrystals in solution by electron microscopy. Science 349:290–295

    Article  CAS  Google Scholar 

  37. Belloni J (2006) Nucleation, growth and properties of nanoclusters studied by radiation chemistry – application to catalysis. Catal Today 113:141–156

    Article  CAS  Google Scholar 

  38. Choi SH, Zhang YP, Gopalan A, Lee KP, Kang HD (2005) Preparation of catalytically efficient precious metallic colloids by gamma-irradiation and characterization. Colloids Surf A Physicochem Eng Asp 256:165–170

    Article  CAS  Google Scholar 

  39. Farhataziz, Rodgers MAJ (1987) Radiation chemistry, principles and applications. VCH, New York

    Google Scholar 

  40. Belloni J, Mostafavi M, Remita H, Marignier JL, Delcourt MO (1998) Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids. New J Chem 22:1239–1255

    Article  CAS  Google Scholar 

  41. Buxton GV (1987) Radiation chemistry of the liquid state. In: Farhataziz, Rodger MAJ (eds) Radiation chemistry: principles and applications. VCH, New York

    Google Scholar 

  42. Allen AO (1961) The radiation chemistry of water and aqueous solutions. Van Nostrand, New York

    Google Scholar 

  43. Dispenza C, Grimaldi N, Sabatino MA, Soroka IL, Jonsson M (2015) Radiation-engineered functional nanoparticles in aqueous systems. J Nanosci Nanotechnol 15:3445–3467

    Article  CAS  Google Scholar 

  44. Pastina B, LaVerne JA (1999) Scavenging of the precursor to the hydrated electron by the selenate ion. J Phys Chem A 103:209–212

    Article  CAS  Google Scholar 

  45. Buxton GV (2008) Radiation chemistry of the liquid state. In: Mostafavi MM, Douki T, Belloni J (eds) Radiation chemistry: principles and applications. EDP Sciences, Orsay

    Google Scholar 

  46. Buxton GV, Mulazzani QG, Ross AB (1995) Critical-review of rate constants for reactions of transients from metal-ions and metal-complexes in aqueous-solution. J Phys Chem Ref Data 24:1055–1349

    Article  CAS  Google Scholar 

  47. Mostafavi M (2008) Lampre, the solvated electron: a singular chemical species. In: Rizot SM, Mostafavi M, Douki T, Rigny P (eds) Radiation chemistry: from basics to applications in material and life sciences. EDP Sciences, Les Ulis

    Google Scholar 

  48. Hart EJ (1964) Hydrated electron. Science 146:19–25

    Article  CAS  Google Scholar 

  49. Park JH, Schneider NM, Grogan JM, Reuter MC, Bau HH, Kodambaka S, Ross FM (2015) Control of electron beam-induced Au nanocrystal growth kinetics through solution chemistry. Nano Lett 15:5314–5320

    Article  CAS  Google Scholar 

  50. Abellan P, Woehl TJ, Evans JE, Browning ND (2014) Calibrated in situ transmission electron microscopy for the study of nanoscale processes in liquids, in chapter one – CISCEM 2014: proceedings of the second conference on in situ and correlative electron microscopy, Saarbrücken, Germany, October 14–15. In: Hawkes PW (ed) Advances in imaging and electron physics, vol 190. Elsevier Ltd, San Diego, USA pp 43–45

    Google Scholar 

  51. Spinks JWT, Woods RJ (1964) An introduction to radiation chemistry. Wiley, New York

    Google Scholar 

  52. Sutter E, Jungjohann K, Bliznakov S, Courty A, Maisonhaute E, Tenney S, Sutter P (2014) In situ liquid-cell electron microscopy of silver-palladium galvanic replacement reactions on silver nanoparticles. Nat Commun 5:4946

    Article  CAS  Google Scholar 

  53. Mirsaidov UM, Zheng H, Casana Y, Matsudaira P (2012) Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy. Biophys J 102:L15–L17

    Article  CAS  Google Scholar 

  54. Plamper FA, Gelissen AP, Timper J, Wolf A, Zezin AB, Richtering W, Tenhu H, Simon U, Mayer J, Borisov OV, Pergushov DV (2013) Spontaneous assembly of Miktoarm stars into vesicular interpolyelectrolyte complexes. Macromol Rapid Commun 34:855–860

    Article  CAS  Google Scholar 

  55. Wang CM, Qiao Q, Shokuhfar T, Klie RF (2014) High-resolution electron microscopy and spectroscopy of ferritin in biocompatible graphene liquid cells and graphene sandwiches. Adv Mater 26:3410–3414

    Article  CAS  Google Scholar 

  56. Park J, Park H, Ercius P, Pegoraro AF, Xu C, Kim JW, Han SH, Weitz DA (2015) Direct observation of wet biological samples by graphene liquid cell transmission electron microscopy. Nano Lett 15:4737–4744

    Article  CAS  Google Scholar 

  57. Kraus T, Jonge N (2013) Dendritic gold nanowire growth observed in liquid with transmission electron microscopy. Langmuir 29:8427

    Article  CAS  Google Scholar 

  58. Ahmad N, Le Bouar Y, Ricolleau C, Alloyeau D (2016) Growth of dendritic nanostructures by liquid-cell transmission electron microscopy: a reflection of the electron-irradiation history. Adv Struct Chem Imaging 2:9

    Article  Google Scholar 

  59. Cazaux J (1995) Correlations between ionization radiation-damage and charging effects in transmission electron-microscopy. Ultramicroscopy 60:411–425

    Article  CAS  Google Scholar 

  60. White ER, Mecklenburg M, Shevitski B, Singer SB, Regan BC (2012) Charged nanoparticle dynamics in water induced by scanning transmission electron microscopy. Langmuir 28:3695–3698

    Article  CAS  Google Scholar 

  61. Humphreys CJ, Bullough TJ, Maher RW, Turner PS (1990) Electron beam nano-etching in oxides, fluorides, metals and semiconductors. Fundamental electron and ion beam interactions with solids for microscopy, microanalysis and microlithography, scanning microscopy supplement, 4:185–192

    Google Scholar 

  62. Egerton RF (2007) Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy. Ultramicroscopy 107:575–586

    Article  CAS  Google Scholar 

  63. Downing KH, McCartney MR, Glaeser RM (2004) Experimental characterization and mitigation of specimen charging on thin films with one conducting layer. Microsc Microanal 10:783–789

    Article  CAS  Google Scholar 

  64. Chen YT, Wang CY, Hong YJ, Kang YT, Lai SE, Chang P, Yew TR (2014) Electron beam manipulation of gold nanoparticles external to the beam. RSC Adv 4:31652–31656

    Article  CAS  Google Scholar 

  65. Zheng HM, Claridge SA, Minor AM, Alivisatos AP, Dahmen U (2009) Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett 9:2460–2465

    Article  CAS  Google Scholar 

  66. Yuk JM, Park J, Ercius P, Kim K, Hellebusch DJ, Crommie MF, Lee JY, Zettl A, Alivisatos AP (2012) High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336:61–64

    Article  CAS  Google Scholar 

  67. Lu JY, Aabdin Z, Loh ND, Bhattacharya D, Mirsaidov U (2014) Nanoparticle dynamics in a nanodroplet. Nano Lett 14:2111–2115

    Article  CAS  Google Scholar 

  68. Woehl TJ, Park C, Evans JE, Arslan I, Ristenpart WD, Browning ND (2013) Direct observation of aggregative nanoparticle growth: kinetic modeling of the size distribution and growth rate. Nano Lett 14:373–378

    Article  Google Scholar 

  69. Chen Q, Smith JM, Park J, Kim K, Ho D, Rasool HI, Zettl A, Alivisatos AP (2013) 3D motion of DNA-au nanoconjugates in graphene liquid cell electron microscopy. Nano Lett 13:4556–4561

    Article  CAS  Google Scholar 

  70. Brenner H (1961) The slow motion of a sphere through a viscous fluid towards a plane surface. Chem Eng Sci 16:242–251

    Article  CAS  Google Scholar 

  71. Woods RJ, Pikaev AK (1994) Applied radiation chemistry: radiation processing. Wiley, New York

    Google Scholar 

  72. Ortiz D, Steinmetz V, Durand D, Legand S, Dauvois V, Maitre P, Le Caer S (2015) Radiolysis as a solution for accelerated ageing studies of electrolytes in Lithium-ion batteries. Nat Commun 6:6950

    Article  Google Scholar 

  73. Wang CM (2015) In situ transmission electron microscopy and spectroscopy studies of rechargeable batteries under dynamic operating conditions: a retrospective and perspective view. J Mater Res 30:326–339

    Article  CAS  Google Scholar 

  74. Holtz ME, Yu YC, Gunceler D, Gao J, Sundararaman R, Schwarz KA, Arias TA, Abruna HD, Muller DA (2014) Nanoscale imaging of Lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett 14:1453–1459

    Article  CAS  Google Scholar 

  75. Park J, Kodambaka S, Ross FM, Grogan JM, Bau HH (2012) In situ liquid cell transmission electron microscopic observation of electron beam induced Au crystal growth in a solution. Microsc Microanal 18:1098–1099

    Article  Google Scholar 

  76. Schneider NM, Norton MM, Mendel BJ, Grogan JM, Ross FM, Bau HH (2014) Electron–water interactions and implications for liquid cell electron microscopy. J Phys Chem C 118:22373

    Article  CAS  Google Scholar 

  77. Grogan JM, Schneider NM, Ross FM, Bau HH (2014) Bubble and pattern formation in liquid induced by an electron beam. Nano Lett 14:359–364

    Article  CAS  Google Scholar 

  78. Ahmad N, Wang G, Nelayah J, Ricolleau C, Alloyeau D (2018) Driving reversible redox reactions at solid-liquid interfaces with the electron beam of a transmission electron microscope. J Microsc 269(2):127–133

    Google Scholar 

  79. Leenheer AJ, Jungjohann KL, Zavadil KR, Sullivan JP, Harris CT (2015) Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy. ACS Nano 9:4379–4389

    Article  CAS  Google Scholar 

  80. Pierson J, Sani M, Tomova C, Godsave S, Peters PJ (2009) Toward visualization of nanomachines in their native cellular environment. Histochem Cell Biol 132:253–262

    Article  CAS  Google Scholar 

  81. Evans JE, Jungjohann KL, Browning ND, Arslan I (2011) Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett 11:2809–2813

    Article  CAS  Google Scholar 

  82. White ER, Mecklenburg M, Singer SB, Aloni S, Regan BC (2011) Imaging nanobubbles in water with scanning transmission electron microscopy. Appl Phys Express 4:055201

    Article  Google Scholar 

  83. Egerton RF (2013) Control of radiation damage in the TEM. Ultramicroscopy 127:100–108

    Article  CAS  Google Scholar 

  84. Sun M, Liao H-G, Niu K, Zheng H (2013) Structural and morphological evolution of lead dendrites during electrochemical migration. Sci Rep 3:3227

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Patricia Abellan or Taylor J. Woehl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abellan, P., Woehl, T.J. (2018). Liquid Cell Electron Microscopy for the Study of Growth Dynamics of Nanomaterials and Structure of Soft Matter. In: Kumar, C. (eds) In-situ Characterization Techniques for Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56322-9_1

Download citation

Publish with us

Policies and ethics