Skip to main content

A Joint Probabilistic Model for Speckle Variance, Amplitude Decorrelation and Interframe Variance (IFV) Optical Coherence Tomography Angiography

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2018

Zusammenfassung

Optical Coherence Tomography Angiography (OCTA) is a general method to visualize blood flow in biological tissue. Despite its good results in practice, the commonly used Amplitude Decorrelation OCTA (AD-OCTA) measure suffers from a well-understood objective function, which makes it challenging to mathematically model post processing tasks like, e.g., denoising. In this paper, a probabilistic model is developed for the three OCTA measures Speckle Variance OCTA, ADOCTA and the newly proposed Interframe Variance OCTA (IFV-OCTA) to enable further tasks like regularization-based denoising. From a theoretical point of view, IFV-OCTA is shown to be in-between the other two methods and can act as a link between them. A small sized observer study suggests that the image quality of IFV-OCTA is comparable to the other methods. IFV-OCTA is a promising OCTA measure for algorithms that require a dependency on the interscan time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science. 1991 11;254(5035):1178–1181.

    Google Scholar 

  2. Mariampillai A, Standish BA, Moriyama EH, et al. Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt Lett. 2008;33(13):1530.

    Google Scholar 

  3. Jia Y, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express. 2012;20(4):4710–4725.

    Google Scholar 

  4. Choi W, Potsaid B, Jayaraman V, et al. Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source. Opt Lett. 2013;38(3):338–340.

    Google Scholar 

  5. Choi W, Moult EM, Waheed NK, et al. Ultrahigh-speed, swept-source optical coherence tomography angiography in nonexudative age-related macular degeneration with geographic atrophy. Ophthalmology. 2015;122(12):2532–2544.

    Google Scholar 

  6. Ploner SB, Moult EM, Choi W, et al. Toward quantitative optical coherence tomography angiography: visualizing blood flow speeds in ocular pathology using variable interscan time analysis. Retina. 2016;36 Suppl 1:S118–S126.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan B. Ploner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ploner, S.B. et al. (2018). A Joint Probabilistic Model for Speckle Variance, Amplitude Decorrelation and Interframe Variance (IFV) Optical Coherence Tomography Angiography. In: Maier, A., Deserno, T., Handels, H., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2018. Informatik aktuell. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56537-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56537-7_37

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56536-0

  • Online ISBN: 978-3-662-56537-7

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics