Skip to main content

Big Data in Gesundheitswesen und Medizin

  • Chapter
  • First Online:
Gesundheit digital

Zusammenfassung

In Medizin und Gesundheitswesen sind immer größere Mengen immer vielfältigerer Daten verfügbar, die zunehmend schneller generiert werden. Dieser allgemeine Trend wird als Big Data bezeichnet. Die Analyse von Big Data mit Methoden des maschinellen Lernens führt zur Entwicklung innovativer Lösungen, die neue medizinische Einsichten generieren und die Qualität und Effizienz im Gesundheitssystem erhöhen können. Prototypische Beispiele existieren im Bereich der Analyse klinischer Texte, der klinischen Entscheidungsunterstützung, der Analyse von Daten aus öffentlichen Datenquellen oder Wearables und in Form der Entwicklung persönlicher Assistenten. Diese Potenziale bringen aber auch neue Herausforderungen im Bereich Datenschutz und in der Transparenz bzw. Nachvollziehbarkeit der Ergebnisse für den medizinischen Experten mit sich.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In der Statistik und im maschinellen Lernen haben sich unterschiedliche Sprachgebräuche herausgebildet, dort werden Merkmale Variablen genannt und insbesondere das Zielmerkmal als abhängige Variable bezeichnet.

Literatur

  • Aggarwal CC, Yu PS (2008) Privacy-preserving data mining: models and algorithms. Springer, US

    Book  Google Scholar 

  • Alaa AM, Hu S, Schaar M (2017) Learning from clinical judgments: semi-markov-modulated marked Hawkes processes for risk prognosis. Proceedings of the 34th international conference on machine learning. PMLR 70:60–69

    Google Scholar 

  • Amir S et al (2017) Quantifying Mental Health from Social Media with Neural User Embeddings. Proceedings of machine learning for healthcare 2017, PMLR 68:306–321

    Google Scholar 

  • Bishop C (2006) Pattern recognition and machine learning. Springer, New York

    Google Scholar 

  • Blecker S et al (2016) Comparison of approaches for heart failure case identification from electronic health record data. J Am Med Assoc Cardiol 1:1014–1020. https://doi.org/10.1001/jamacardio.2016.3236

    Article  Google Scholar 

  • Butler D (2013) When Google got flu wrong, US outbreak foxes a leading web-based method for tracking seasonal flu. Nature 494:155–156. http://www.nature.com/news/when-google-got-flu-wrong-1.12413. Zugegriffen: 6. Juni 2018

    Article  CAS  PubMed  Google Scholar 

  • Choi E et al (2016) Doctor AI: predicting clinical events via recurrent neural networks. Proceedings of the 1st machine learning for healthcare conference. PMLR 56:301–318

    Google Scholar 

  • Craven MW, Shavlik JW (1996) Extracting tree-structured representations of trained networks. Adv Neural Process Sys 8:24–30

    Google Scholar 

  • Dempsey WH et al (2016) iSurvive: an interpretable, event-time prediction model for mHealth. Proceedings of the 34th international conference on machine learning. PMLR 70:970–979

    Google Scholar 

  • Dernoncourt F et al (2017) De-identification of patient notes with recurrent neural networks. J Am Med Inf Assoc 24:596–606. https://doi.org/10.1093/jamia/ocw156

    Article  Google Scholar 

  • Doshi-Velez F et al (2017) Accountability of AI under the law: the role of explanation. https://arxiv.org/abs/1711.01134. Zugegriffen: 9. Juni 2018

  • Dwork C (2006) Differential privacy. 33rd international colloquium on automata, languages and programming, part II (ICALP 2006). Springer, Heidelberg, S 1–12

    Google Scholar 

  • Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542:115–118. https://doi.org/10.1038/nature21056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrucci D et al (2010) Building Watson: an overview of the deepQA Project. AI magazin, Fall 2010, Association for the Advancement of Artificial Intelligence, S 59–79

    Google Scholar 

  • Fletcher RR et al (2011) Wearable sensor platform and mobile application for use in cognitive behavioral therapy for drug addiction and PTSD. Proceedings of 2011 annual international conference of the IEEE engineering in medicine and biology society, Boston, S 1802–1805. https://doi.org/10.1109/iembs.2011.6090513

  • Futoma J, Hariharan S, Heller K (2017) Learning to detect sepsis with a multitask Gaussian process RNN classifier. Proceedings of the 34th international conference on machine learning. PMLR 70:1174–1182

    Google Scholar 

  • Gardner J, Xiong L (2009) An integrated framework for de-identifying unstructured medical data. Data Knowl Eng 68:1441–1451. https://doi.org/doi.org/10.1016/j.datak.2009.07.006

    Article  Google Scholar 

  • Gartner (2017) Gartner IT glossary, big data – from the Gartner IT glossary: what is big data? https://www.gartner.com/it-glossary/big-data. Zugegriffen: 22. Juni 2018

  • Garvin JH et al (2018) Automating quality measures for heart failure using natural language processing: a descriptive study in the department of veterans affairs. JMIR Med Inform 6(1):e5

    Article  PubMed  PubMed Central  Google Scholar 

  • Giansanti Daniele et al (2008) Assessment of fall-risk by means of a neural network based on parameters assessed by a wearable device during posturography. Med Eng Phys 30:367–372

    Article  PubMed  Google Scholar 

  • Ginsberg J et al (2009) Detecting influenza epidemics using search engine query data. Nature 457:1012–1014. https://doi.org/10.1038/nature07634

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Hernandez G et al (2017) Capturing the patient’s perspective: a review of advances in natural language processing of health-related text. IMIA Yearb Med Inform 1:214–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodfellow I, Bengio Y (2016) Deep learning. MIT Press. http://deeplearningbook.org. Zugegriffen: 6. Juni 2018

  • Grace K, Salvatier J, Dafoe A, Zhang B, O (2017) When will AI exceed human performance? Evidence from AI experts. arXiv preprint. arXiv:1705.08807

  • Gravina R et al (2017) Multi-sensor fusion in body sensor networks: state-of-the-art and research challenges. Inf Fusion 35:68–80

    Article  Google Scholar 

  • Grosskreutz H et al (2012) An enhanced relevance criterion for more concise supervised pattern. KDD ’12, Proceedings of the 18th ACM SIGKDD conference on knowledge discovery and data mining (KDD 2012). ACM, S 1442–1450

    Google Scholar 

  • Grosskreutz H, Lemmen B, Rüping S (2010) Privacy-preserving data-mining. Informatik-Spektrum 33:380–383

    Article  Google Scholar 

  • Gurulingappa H et al (2013) Automatic detection of adverse events to predict drug label changes using text and data mining techniques. Pharmacoepidemiol Drug Saf 22:1189–1194. https://doi.org/10.1002/pds.3493

    Article  PubMed  Google Scholar 

  • Haq HUI, Ahmad R, Hussain SUI (2017) Intelligent EHRs: predicting procedure codes from diagnosis codes. 31st conference on neural information processing systems (NIPS 2017), Long Beach

    Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction, 2. Aufl. Springer, New York

    Book  Google Scholar 

  • Kao HC, Tang KF, Chang EY (2018) Context-aware symptom checking for disease diagnosis using hierarchical reinforcement learning. Proceedings of AAAI coference on artificial intelligence

    Google Scholar 

  • Karssemeijer N, Laak JAWM van der, and the CAMELYON16 Consortium (2017) Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318:2199–2210. https://doi.org/10.1001/jama.2017.14585

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim B, Khanna R, Koyejo S (2016) Examples are not Enough, Learn to Criticize! Criticism for Interpretability. Neural Information Processing Systems. Adv Neural Inf Process Syst 2280–2288

    Google Scholar 

  • King RC et al (2017) Application of data fusion techniques and technologies for wearable health monitoring. Med Eng Phys 42:1–12

    Article  PubMed  Google Scholar 

  • Kreimeyer K et al (2017) Natural language processing systems for capturing and standardizing unstructured clinical information. A systematic review. J Biomed Inform 73:14–29. https://doi.org/doi.org/10.1016/j.jbi.2017.07.012

    Article  PubMed  PubMed Central  Google Scholar 

  • Laney D (2001) 3D data management: controlling data volume, velocity and variety. META Group, Stamford

    Google Scholar 

  • Leaman R, Khare R, Lu Z (2015) Challenges in clinical natural language processing for automated disorder normalization. J Biomed Inform 57:28–37. https://doi.org/doi.org/10.1016/j.jbi.2015.07.010

    Article  PubMed  PubMed Central  Google Scholar 

  • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444

    Article  CAS  PubMed  Google Scholar 

  • Limsopatham N, Collier N (2016) Normalising medical concepts in social media texts by learning semantic representation. Proceedings of the 54th annual meeting of the association for computational linguistics, Berlin, S 1014–1023

    Google Scholar 

  • Lipton ZC et al (2016) Learning to diagnose with LSTM recurrent neural networks. International conference on learning representations (ICLR 2016)

    Google Scholar 

  • Madan S et al (2016) The BEL information extraction workflow (BELIEF): evaluation in the biocreative v bel and iat track. Database J Biol Database Curation 2016:baw136 (PMC)

    Article  PubMed  PubMed Central  Google Scholar 

  • Mikolov T et al (2013) Distributed representations of words and phrases and their compositionality. Adv Neural Inf Process Sys 26:3111–3119

    Google Scholar 

  • Mintz M, Bills S, Snow R, Jurafsky D (2009) Distant supervision for relation extraction without labeled data. Proceedings of the joint conference of the 47th annual meeting of the ACL and the 4th international joint conference on natural language processing of the AFNLP 2. Association for Computational Linguistics, Stroudsburg, USA, S 1003–1011

    Google Scholar 

  • Miotto R et al (2015) Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform, bbx044. https://doi.org/10.1093/bib/bbx044

  • Montavon G, Samek W, Müller KR (2017) Methods for interpreting and understanding deep neural networks. Digit Signal Process 73:1–15

    Article  Google Scholar 

  • Nguyen H, Patrick J (2016) Text mining in clinical domain: dealing with noise. KDD ’16, Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining 22, ACM, S 549–558

    Google Scholar 

  • Nguyen P, Tran T, Wickramasinghe N, Venkatesh S (2017) Deepr: a convolutional net for medical records. IEEE J Biomed Health Inform 21:22–30. https://doi.org/10.1109/JBHI.2016.2633963

    Article  PubMed  Google Scholar 

  • Nicolas J et al (2013) A data mining approach for grouping and analyzing trajectories of care using claim data: the example of breast cancer. BMC Med Inform Decis Making 13:130. https://doi.org/10.1186/1472-6947-13-130

    Article  Google Scholar 

  • Nosenge N (2016) Can you teach old drugs new tricks? Nature 534:314–316. https://doi.org/10.1038/534314a

    Article  Google Scholar 

  • O’Connor K et al (2014) Pharmacovigilance on twitter? Mining tweets for adverse drug reactions. Am Med Inform Assoc 2014:924–933

    Google Scholar 

  • Osthus D et al (2017) Dynamic Bayesian influenza forecasting in the United States with hierarchical discrepancy. arXiv preprint. arXiv:1708.09481

  • Pommerening K et al (2014) Leitfaden zum Datenschutz in medizinischen Forschungsprojekten – Generische Lösungen der TMF 2.0. Medizinisch Wissenschaftliche Verlagsgesellschaft

    Google Scholar 

  • Quinlan JR (1993) C4.5: Programs for machine learning. Machine learning. Morgan Kaufmann, San Mateo

    Google Scholar 

  • Rajpurkar P, Hannun AY, Haghpanahi M, Bourn C, Ng AY (2017) Cardiologist-level arrhythmia detection with convolutional neural networks. arXiv preprint. arXiv:1707.01836

  • Ribeiro MT, Singh S, Guestrin C (2016) “Why should I trust you?”: Explaining the Predictions of any classifier. KDD ’16, Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, S 1135-1144. https://doi.org/10.1145/2939672.2939778

  • Röhrig B et al (2009) Types of study in medical research. Deutsch Ärtzteblatt Int 106:262–268. https://doi.org/10.3238/arztebl.2009.0262

    Article  Google Scholar 

  • Rotmensch M et al (2017) Learning a health knowledge graph from electronic medical records. Sci Rep 7:5994. https://doi.org/10.1038/s41598-017-05778-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruud KL et al (2010) Automated detection of follow-up appointments using text mining of discharge records. Int J Qual Health Care 22:229–235. https://doi.org/10.1093/intqhc/mzq012

    Article  PubMed  Google Scholar 

  • Salarian A et al (2007) Ambulatory monitoring of physical activities in patients with parkinson’s disease. IEEE Trans Biomed Eng 54:2296–2299. https://doi.org/10.1109/TBME.2007.896591

    Article  PubMed  Google Scholar 

  • Sculley D et al (2015) Hidden technical debt in machine learning systems. Adv Neural Inf Process Sys 28:817–824

    Google Scholar 

  • Sebastiani P, Mandl KD, Szolovits P, Kohane IS, Ramoni MF (2006) A Bayesian dynamic model for influenza surveillance. Stat Med 25:1803–1825. https://doi.org/10.1002/sim.2566

    Article  PubMed  PubMed Central  Google Scholar 

  • Semigran HL, Levine DM, Nundy S, Mehrotra A (2016) Comparison of physician and computer diagnostic accuracy. J Am Med Assoc Int Med 176:1860–1861. https://doi.org/10.1001/jamainternmed.2016.6001

    Article  Google Scholar 

  • Shearer C (2000) The CRISP-DM model: the new blueprint for data mining. J Data Warehouse 5:13–22

    Google Scholar 

  • Stuart EA (2010) Matching methods for causal inference: a review and a look forward. Stat Sci 25:1–21. https://doi.org/10.1214/09-STS313

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutton R, Barto A (1998) Reinforcement learning: an introduction. MIT Press, Cambridge

    Google Scholar 

  • Sweeney L (2000) Simple demographics often identify people uniquely. Carnegie Mellon University, Data privacy Working Paper 3. Pittsburgh

    Google Scholar 

  • Szegedy et al (2015). Going deeper with convolutions. Proceedings of 2015 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, Boston

    Google Scholar 

  • Tamang S et al (2015) Detecting unplanned care from clinician notes in electronic health records. J Oncol Pract 11:3

    Article  Google Scholar 

  • Turing AM (1950) Computing machinery and intelligence. Mind 49:433–460

    Article  Google Scholar 

  • Vasan G, Pilarski PM (2017) Learning from demonstration: teaching a myoelectric prosthesis with an intact limb via reinforcement learning. 2017 International Conference on Rehabilitation Robotics (ICORR), London, S 1457–1464. https://doi.org/10.1109/icorr.2017.8009453

  • Wang Z, Brudno M (2017) Towards a directory of rare disease specialists: identifying experts from publication history. Proceedings of machine learning for healthcare 2017. PMLR: 352–360

    Google Scholar 

  • Wang X, Sontag D, Wang F (2014) Unsupervised learning of disease progression models. KDD ’14, Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, S 85–94 https://doi.org/10.1145/2623330.2623754

  • Wang Y et al (2018) Clinical information extraction applications: a literature review. J Biomed Inf 77:34–49. https://doi.org/10.1016/j.jbi.2017.11.011

    Article  Google Scholar 

  • Yang YP et al (2017) The effects of an activity promotion system on active living in overweight subjects with metabolic abnormalities. Obes Res Clin Pract 11:718-727. https://doi.org/10.1016/j.orcp.2017.06.002

    Article  Google Scholar 

  • Yang Y, Fasching PA, Tresp V (2017) Predictive modeling of therapy decisions in metastatic breast cancer with recurrent neural network encoder and multinomial hierarchical regression decoder. 2017 IEEE international conference on healthcare informatics (ICHI), Park City, S 46–55. https://doi.org/10.1109/ichi.2017.51

  • Yildirim P, Ekmekci IO, Holzinger A (2013) On knowledge discovery in open medical data on the example of the fda drug adverse event reporting system for alendronate (Fosamax). Human-computer interaction and knowledge discovery in complex, unstructured, Big Data, S 95–206

    Google Scholar 

  • Yumak Z, Pu P (2013) Survey of sensor-based personal wellness management systems. BioNanoSci 3:254–269. https://doi.org/10.1007/s12668-013-0099-0

    Article  Google Scholar 

  • Zarringhalam K et al (2014) Robust clinical outcome prediction based on Bayesian analysis of transcriptional profiles and prior causal networks. Bioinformatics 30:i69–i77. https://doi.org/10.1093/bioinformatics/btu272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Rüping .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rüping, S., Sander, J. (2019). Big Data in Gesundheitswesen und Medizin. In: Haring, R. (eds) Gesundheit digital. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57611-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-57611-3_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-57610-6

  • Online ISBN: 978-3-662-57611-3

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics