Skip to main content

Mehrgüterflüsse und kantendisjunkte Wege

  • Chapter
  • First Online:
Kombinatorische Optimierung

Part of the book series: Masterclass ((MASTERCLASS))

  • 6243 Accesses

Zusammenfassung

Mehrgüterflüsse und das Kantendisjunkte-Wege-Problem sind Themen dieses Kapitels. Wir betrachten unter anderem die Algorithmen von Garg-Könemann und Leighton-Rao. Außerdem studieren wir, in welchen Fällen das Kantendisjunkte-Wege-Problem polynomiell lösbar ist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Allgemeine Literatur:

  • Frank, A. [1990]: Packing paths, circuits and cuts – a survey. In: Paths, Flows, and VLSILayout (B. Korte, L. Lovász, H.J. Prömel, A. Schrijver,Hrsg.), Springer, Berlin 1990, S. 47–100

    Google Scholar 

  • Naves, G., und Sebő, A. [2009]: Multiflow feasibility: an annotated tableau. In: Research Trends in Combinatorial Optimization (W.J. Cook, L. Lovász, J. Vygen, Hrsg.), Springer, Berlin 2009, pp. 261–283

    Google Scholar 

  • Ripphausen-Lipa, H., Wagner, D., und Weihe, K. [1995]: Efficient algorithms for disjoint paths in planar graphs. In: Combinatorial Optimization; DIMACS Series in Discrete Mathematics and Theoretical Computer Science 20 (W.J. Cook, L. Lovász, P. Seymour, Hrsg.), AMS, Providence 1995

    Google Scholar 

  • Schrijver, A. [2003]: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin 2003, Kapitel 70–76

    Google Scholar 

  • Shmoys, D.B. [1996]: Cut problems and their application to divide-and-conquer. In: Approximation Algorithms for NP-Hard Problems (D.S. Hochbaum, Hrsg.), PWS, Boston, 1996

    Google Scholar 

Zitierte Literatur:

  • Aumann, Y. und Rabani, Y. [1998]: An \( O(\log \,k) \) approximate min-cut max-flow theorem and approximation algorithm. SIAM Journal on Computing 27 (1998), 291–301

    Article  MathSciNet  Google Scholar 

  • Arora, S., Rao, S., und Vazirani, U. [2009]: Expander flows, geometric embeddings and graph partitioning. Journal of the ACM 56 (2009), Article 5

    Article  MathSciNet  Google Scholar 

  • Arora, S., Hazan, E., und Kale, S. [2004]: \( O(\sqrt {\log \,n} ) \) approximation to SPARSEST CUT in Õ(n2) time. Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (2004), 238–247

    Google Scholar 

  • Becker, M., und Mehlhorn, K. [1986]: Algorithms for routing in planar graphs. Acta Informatica 23 (1986), 163–176

    Article  MathSciNet  Google Scholar 

  • Bienstock, D., und Iyengar, G. [2006]: Solving fractional packing problems in \( O^{*} (\frac{1}{ \in }) \) iterations. SIAM Journal on Computing 35 (2006), 825–854

    Article  MathSciNet  Google Scholar 

  • Boesch, F., und Tindell, R. [1980]: Robbins’s theorem for mixed multigraphs. American Mathematical Monthly 87 (1980), 716–719

    Article  MathSciNet  Google Scholar 

  • Charikar, M., Hajiaghayi, M.T., Karloff, H. und Rao, S. [2010]: \( {\ell }\frac{2}{2} \) spreading metrics for vertex ordering problems. Algorithmica 56 (2010), 577–604

    Google Scholar 

  • Chekuri, C., und Khanna, S. [2007]: Edge-disjoint paths revisited. ACM Transactions on Algorithms 3 (2007), Article 46

    Article  MathSciNet  Google Scholar 

  • Chudak, F.A., und Eleutério, V. [2005]: Improved approximation schemes for linear programming relaxations of combinatorial optimization problems. In: Integer Programming and Combinatorial Optimization; Proceedings of the 11th International IPCO Conference; LNCS 3509 (M. Jünger, V. Kaibel, Hrsg.), Springer, Berlin 2005, S. 81–96

    Chapter  Google Scholar 

  • Even, S., Itai, A., und Shamir, A. [1976]: On the complexity of timetable and multicommodity flow problems. SIAM Journal on Computing 5 (1976), 691–703

    Article  MathSciNet  Google Scholar 

  • Feige, U., und Lee, J.R. [2007]: An improved approximation ratio for the minimum linear arrangement problem. Information Processing Letters 101 (2007), 26–29

    Article  MathSciNet  Google Scholar 

  • Fleischer, L.K. [2000]: Approximating fractional multicommodity flow independent of the number of commodities. SIAM Journal on Discrete Mathematics 13 (2000), 505–520

    Article  MathSciNet  Google Scholar 

  • Ford, L.R., und Fulkerson, D.R. [1958]: A suggested computation for maximal multicommodity network flows. Management Science 5 (1958), 97–101

    Article  MathSciNet  Google Scholar 

  • Ford, L.R., und Fulkerson, D.R. [1962]: Flows in Networks. Princeton University Press, Princeton 1962

    Google Scholar 

  • Fortune, S., Hopcroft, J., und Wyllie, J. [1980]: The directed subgraph homeomorphism problem. Theoretical Computer Science 10 (1980), 111–121

    Article  MathSciNet  Google Scholar 

  • Frank, A. [1980]: On the orientation of graphs. Journal of Combinatorial Theory B 28 (1980), 251–261

    Article  MathSciNet  Google Scholar 

  • Frank, A. [1981]: How to make a digraph strongly connected. Combinatorica 1 (1981), 145–153

    Article  MathSciNet  Google Scholar 

  • Frank, A. [1985]: Edge-disjoint paths in planar graphs. Journal of Combinatorial Theory B 39 (1985), 164–178

    Article  MathSciNet  Google Scholar 

  • Frank, A., und Tardos, É. [1984]: Matroids from crossing families. In: Finite and Infinite Sets; Vol. I (A. Hajnal, L. Lovász, und V.T. Sós, Hrsg.), North-Holland, Amsterdam, 1984, S. 295–304

    Chapter  Google Scholar 

  • Garg, N., und Könemann, J. [2007]: Faster and simpler algorithms for multicommodity flow and other fractional packing problems. SIAM Journal on Computing 37 (2007), 630–652

    Article  MathSciNet  Google Scholar 

  • Grigoriadis, M.D., und Khachiyan, L.G. [1996]: Coordination complexity of parallel pricedirective decomposition. Mathematics of Operations Research 21 (1996), 321–340

    Article  MathSciNet  Google Scholar 

  • Guruswami, V., Håstad, J., Manokaran, R., Raghavendra, P., und Charikar, M. [2011]: Beating the random ordering is hard: every ordering CSP is approximation resistant. SIAM Journal on Computing 40 (2011), 878–914

    Article  MathSciNet  Google Scholar 

  • Hansen, M.D. [1989]: Approximation algorithms for geometric embeddings in the plane with applications to parallel processing problems. Proceedings of the 30th Annual IEEE Symposium on Foundations of Computer Science (1989), 604–609

    Google Scholar 

  • Hirai, H. [2010]: Metric packing for K3 + K3. Combinatorica 30 (2010), 295–326

    Google Scholar 

  • Hu, T.C. [1963]: Multi-commodity network flows. Operations Research 11 (1963), 344–360

    Article  Google Scholar 

  • Ibaraki, T., und Poljak, S. [1991]: Weak three-linking in Eulerian digraphs. SIAM Journal on Discrete Mathematics 4 (1991), 84–98

    Article  MathSciNet  Google Scholar 

  • Karakostas, G. [2008]: Faster approximation schemes for fractional multicommodity flow problems. ACM Transactions on Algorithms 4 (2008), Article 13

    Article  MathSciNet  Google Scholar 

  • Karp, R.M. [1972]: Reducibility among combinatorial problems. In: Complexity of Computer Computations (R.E. Miller, J.W. Thatcher, Hrsg.), Plenum Press, New York 1972, S. 85–103

    Chapter  Google Scholar 

  • Karzanov, A.V. [1987]: Half-integral five-terminus flows. Discrete Applied Mathematics 18 (1987) 263–278

    Article  MathSciNet  Google Scholar 

  • Kawarabayashi, K., Kobayashi, Y., und Reed, B. [2012] The disjoint paths problem in quadratic time. Journal of Combinatorial Theory B 102 (2012), 424–435

    Article  MathSciNet  Google Scholar 

  • Kawarabayashi, K., und Wollan, P. [2010]: A shorter proof of the graph minor algorithm: the unique linkage theorem. Proceedings of the 42th Annual ACM Symposium on Theory of Computing (2010), 687–694

    Google Scholar 

  • Kleinberg, J. [1996]: Approximation algorithms for disjoint paths problems. PhD thesis, MIT, Cambridge 1996

    Google Scholar 

  • Leighton, T., und Rao, S. [1999]: Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. Journal of the ACM 46 (1999), 787–832

    Article  MathSciNet  Google Scholar 

  • Linial, N., London, E., und Rabinovich, Y. [1995]: The geometry of graphs and some of its algorithmic applications. Combinatorica 15 (1995), 215–245

    Google Scholar 

  • Lomonosov, M. [1979]: Multiflow feasibility depending on cuts. Graph Theory Newsletter 9 (1979), 4

    Google Scholar 

  • Lovász, L. [1976]: On two minimax theorems in graph. Journal of Combinatorial Theory B 21 (1976), 96–103

    Article  MathSciNet  Google Scholar 

  • Lucchesi, C.L., und Younger, D.H. [1978]: A minimax relation for directed graphs. Journal of the London Mathematical Society II 17 (1978), 369–374

    Article  MathSciNet  Google Scholar 

  • Matsumoto, K., Nishizeki, T., und Saito, N. [1986]: Planar multicommodity flows, maximum matchings and negative cycles. SIAM Journal on Computing 15 (1986), 495–510

    Article  MathSciNet  Google Scholar 

  • Middendorf, M., und Pfeiffer, F. [1993]: On the complexity of the disjoint path problem. Combinatorica 13 (1993), 97–107

    Google Scholar 

  • Müller, D., Radke, K., und Vygen, J. [2011]: Faster min-max resource sharing in theory and practice. Mathematical Programming Computation 3 (2011), 1–35

    Article  MathSciNet  Google Scholar 

  • Nagamochi, H., und Ibaraki, T. [1989]: On max-flow min-cut and integral flow properties for multicommodity flows in directed networks. Information Processing Letters 31 (1989), 279–285

    Article  MathSciNet  Google Scholar 

  • Nash-Williams, C.S.J.A. [1969]: Well-balanced orientations of finite graphs and unobtrusive odd-vertex-pairings. In: Recent Progress in Combinatorics (W. Tutte, Hrsg.), Academic Press, New York 1969, S. 133–149

    Google Scholar 

  • Naves, G. [2009]: The hardness of routing two pairs on one face. Les cahiers Leibniz, Technical Report No. 177, Grenoble 2009

    Google Scholar 

  • Nishizeki, T., Vygen, J., und Zhou, X. [2001]: The edge-disjoint paths problem is NP-complete for series-parallel graphs. Discrete Applied Mathematics 115 (2001), 177–186

    Article  MathSciNet  Google Scholar 

  • Okamura, H., und Seymour, P.D. [1981]: Multicommodity flows in planar graphs. Journal of Combinatorial Theory B 31 (1981), 75–81

    Article  MathSciNet  Google Scholar 

  • Räcke, H. [2008]: Optimal hierarchical decompositions for congestion minimization in networks. Proceedings of the 40th Annual ACM Symposium on Theory of Computing (2008), 255–264

    Google Scholar 

  • Raghavan, P., und Thompson, C.D. [1987]: Randomized rounding: a technique for provably good algorithms and algorithmic proofs. Combinatorica 7 (1987), 365–374

    Article  MathSciNet  Google Scholar 

  • Robertson, N., und Seymour, P.D. [1986]: Graph minors VI; Disjoint paths across a disc. Journal of Combinatorial Theory B 41 (1986), 115–138

    Article  MathSciNet  Google Scholar 

  • Robertson, N., und Seymour, P.D. [1995]: Graph minors XIII; The disjoint paths problem. Journal of Combinatorial Theory B 63 (1995), 65–110

    Article  MathSciNet  Google Scholar 

  • Rothschild, B., und Whinston, A. [1966]: Feasibility of two-commodity network flows. Operations Research 14 (1966), 1121–1129

    Article  MathSciNet  Google Scholar 

  • Scheffler, P. [1994]: A practical linear time algorithm for disjoint paths in graphs with bounded tree-width. Technical Report No. 396/1994, FU Berlin, Fachbereich 3 Mathematik

    Google Scholar 

  • Schwärzler, W. [2009]: On the complexity of the planar edge-disjoint paths problem with terminals on the outer boundary. Combinatorica 29 (2009), 121–126

    Article  MathSciNet  Google Scholar 

  • Sebő, A. [1993]: Integer plane multiflows with a fixed number of demands. Journal of Combinatorial Theory B 59 (1993), 163–171

    Article  MathSciNet  Google Scholar 

  • Seymour, P.D. [1980]: Four-terminus flows. Networks 10 (1980), 79–86

    Article  MathSciNet  Google Scholar 

  • Seymour, P.D. [1981]: On odd cuts and multicommodity flows. Proceedings of the London Mathematical Society (3) 42 (1981), 178–192

    Google Scholar 

  • Shahrokhi, F., und Matula, D.W. [1990]: The maximum concurrent flow problem. Journal of the ACM 37 (1990), 318–334

    Article  MathSciNet  Google Scholar 

  • Sherman, J. [2009]: Breaking the multicommodity flow barrier for \( O(\sqrt {\log n} ) \)-approximations to sparsest cut. Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science (2009), 363–372

    Google Scholar 

  • Vygen, J. [1995]: NP-completeness of some edge-disjoint paths problems. Discrete Applied Mathematics 61 (1995), 83–90

    Article  MathSciNet  Google Scholar 

  • Wagner, D., und Weihe, K. [1995]: A linear-time algorithm for edge-disjoint paths in planar graphs. Combinatorica 15 (1995), 135–150

    Article  MathSciNet  Google Scholar 

  • Young, N. [1995]: Randomized rounding without solving the linear program. Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms (1995), 170–178

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Korte .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korte, B., Vygen, J. (2018). Mehrgüterflüsse und kantendisjunkte Wege. In: Kombinatorische Optimierung. Masterclass. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57691-5_19

Download citation

Publish with us

Policies and ethics