Skip to main content
  • 5202 Accesses

Zusammenfassung

Auf Grund der Vorteile der virtuellen Realität (Dreidimensionalität, Interaktion mit dem Nutzer, standardisierte Bedingungen) wird sie zunehmend auch in der sportwissenschaftlichen Forschung und Sportpraxis eingesetzt. Das Kapitel beschäftigt sich mit technologischen Grundlagen sowie den Anforderungen an die VR zur Nutzung im Sport. Anwendungsfelder insbesondere in der Sportmotorik werden vorgestellt. Die Kombination mit bewegungsrelevanten Messverfahren (z. B.: Motion Capturing, Kraftmessplatten, EMG, EEG und Eyetracking) können Aufschluss über das Bewegungsverhalten des Menschen in einer virtuellen Umgebung im Vergleich zur realen Welt geben.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Adamovich, S. V., Fluet, G. G., Tunik, E., & Merians, A. S. (2009). Sensorimotor training in virtual reality: A review. Neurorehabilitation, 25(1), 29–44. https://doi.org/10.3233/nre-2009-0497.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aleshin, V., Afanasiev, V., Bobkov, A., Klimenko, S., Kuliev, V., & Novgorodtsev, D. (2012). Visual 3D perception of motion environment and visibility factors in virtual space. In D. Hutchison, et al. (Eds.), Lecture notes in computer science. transactions on computational science XVI, (S. 17–33). Berlin: Springer. https://doi.org/10.1007/978-3-642-32663-9_2.

  • Anglin, J. M., Sugiyama, T., & Liew, S. L. (2017). Visuomotor adaptation in head-mounted virtual reality versus conventional training. Scientific Reports, 4(7), 45469. https://doi.org/10.1038/srep45469.

    Article  CAS  Google Scholar 

  • Argelaguet, S. F., & Andujar, C. (2013). A survey of 3D object selection techniques for virtual environments. Computer und Graphics, 37,121–136.

    Article  Google Scholar 

  • Argelaguet, S. F., Multon, F., & Lécuyer, A. (2015). A methodology for introducing competitive anxiety and pressure in VR sports training. Frontiers in Robotics and AI, Frontiers, 2(10), 11. https://doi.org/10.3389/frobt.2015.00010.

    Article  Google Scholar 

  • Bailenson, J. N., Blascovich, J., Beall, A. C., & Loomis, J. M. (2003). Interpersonal distance in immersive virtual environments. Personality and Social Psychology Bulletin, 29(7), 819–833. https://doi.org/10.1177/0146167203029007002.

    Article  PubMed  Google Scholar 

  • Bandow, N., Emmermacher, P., Stucke, C., Masik, S., & Witte, K. (2014). Comparison of a video and a virtual based environment using the temporal and spatial occlusion technique for studying anticipation in karate. International Journal of Computer Science in Sport, 13(1), 44–56.

    Google Scholar 

  • Bandow, N., Witte, K., & Masik, S. (2012). Development and evaluation of a virtual test environment for performing reaction tasks. International Journal of Computer Science in Sport, 10(1), 4–15.

    Google Scholar 

  • Bideau, B., Kulpa, R., Vignais, N., Brault, S., Craig, C., & Multon, F. (2010). Using virtual reality to analyze sports performance. IEEE Computer Graphics and Applications, 30(2), 14–21. https://doi.org/10.1109/mcg.2009.134.

    Article  PubMed  Google Scholar 

  • Blanke, O., Slater, M., & Serino, A. (2015). Behavioral, neural, and computational principles of bodily self-conciousness. Neuron, 88,145–166. https://doi.org/10.1016/j.neuron.2015.09.029.

    Article  PubMed  CAS  Google Scholar 

  • Bonney, E., Jelsma, L. D., Ferguson, G. D., & Smits-Engelsman, B. C. M. (2017). Learning better by repetition or variation? Is transfer at odds with task specific training? PLoS ONE, 12(3), e0174214. https://doi.org/10.10.1371/journal.pone.0174214.

  • Bordnick, P. S., Carter, B. L., & Traylor, A. C. (2011). What virtual reality research in addictions can tell us about the future of obesity assessment and treatment. Journal of Diabetes Science and Technology, 5(2), 265–271.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowman, D. A., & McMahan, R. P. (2007). Virtual reality: How much immersion is enough? Computer, 40(7), 36–42.

    Article  Google Scholar 

  • Brand, J., Piccirelli, M., Hepp-Reymond, M. C., Morari, M., Michels, L., & Eng, K. (2016). Virtual hand feedback reduces reaction time in an interactive finger reaching task. PLoS ONE, 1(5), e0154807. https://doi.org/10.1371/journal.pone.0154807.

    Article  CAS  Google Scholar 

  • Brault, S., Bideau, B., Kulpa, R., & Craig, C. M. (2012). Detecting deception in movement: The case of the side-step in rugby. PLoS ONE, 7(6), e37494. https://doi.org/10.1371/journal.pone.0037494.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bredl, K., Bräutigam, B., & Herz, D. (2017). Avatar-basierte Beratung in virtuellen Räumen. Die Bedeutung Virtueller Realität bei helfenden Beziehungen für Berater, Coaches und Therapeuten. Wiesbaden: Springer Fachmedien Wiesbaden GmbH.

    Google Scholar 

  • Brill, M. (2009). Virtuelle Realität. Berlin: Springer.

    Google Scholar 

  • Calabro, R. S., Naro, A., Russo, M., Leo, A., De Luca, R., Balletta, T., et al. (2017). The role of virtual reality in improving motor performance as revealed by EEG: a randomized controlled trial. Journal of NeuroEngineering and Rehabilitation, 14(1), 53. https://doi.org/10.1186/s12984-017-0268-4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Camporesi, C., & Kallmann, M. (2016). The effects of avatars, stereo vision and display size on reaching and motion reproduction. IEEE Transactions on Visualization and Computer Graphics, 22(5), 1592–1604. https://doi.org/10.1109/tvog.2015.2440231.

    Article  PubMed  Google Scholar 

  • Carnegie, K., & Rhee, T. (2015). Reducing visual discomfort with HMDs using dynamic depth of field. IEEE Computer Graphics and Applications, 35(5), 34–41. https://doi.org/10.1109/mcg.2015.98.

    Article  PubMed  Google Scholar 

  • Chan, J. C. P., Leung, H., Tang, J. K. T., & Komura, T. (2011). A virtual reality dance training system using motion capture technology. IEEE Transactions on Learning Technologies, 4(2), 187–195. https://doi.org/10.1109/tlt.2010.27.

    Article  Google Scholar 

  • Cheung, K. L., Tunik, E., Adamovich, S. V., & Boyd, L. A. (2014). Neuroplasticity and Virtual Reality. In P. L. T. Weiss, et al. (eds.), Virtual reality for physical and motor rehabilitation, virtual reality technologies for health and clinical applications. New York: Springer. https://doi.org/10.1007/978-1-4939-0968-1_2.

  • Cleworth, T. W., Chua, R., Inglis, J. T., & Carpenter, M. G. (2016). Influence of virtual height exposure on postural reactions to support surface translations. Gait und Posture, 47,96–102. https://doi.org/10.1016/j.gaitpost.2016.04.006.

    Article  Google Scholar 

  • Colley, A., Väyrynen, J., & Häkkila, J. (2015). Skiing in a blended virtuality – an in-the-wild experiment. AcademicMindTrek, 22–24, Tampere. https://doi.org/10.1145/2818187.2818288.

  • Correia, V., Araùjo, D., Cummins, A., & Craig, C. M. (2012). Perceiving and action upon spaces in a VR rugby task: Expertise effects in affordance detention and task achievement. Journal of Sport und Exercise Psychology, 32,305–321.

    Article  Google Scholar 

  • Covaci, A., Olivier, A. H., & Multon, F. (2015). Visual perspective and feedback guidance for VR free-throw training. IEEE Computer Graphics and Applications, 35(5), 55–65. https://doi.org/10.1109/mcg.2015.95.

    Article  PubMed  Google Scholar 

  • Craig, C. (2013). Understanding perception and action in sport: How can virtual reality technology help? Sports Technology, 6(4), 161–169. https://doi.org/10.1080/19346182.2013.855224.

    Article  Google Scholar 

  • Craig, C. M., Bastin, J., & Montagne, G. (2011). How information guides movement: Intercepting curved free kicks in soccer. Human Movement Science, 30(5), 931–941. https://doi.org/10.1016/j.humov.2010.08.007.

    Article  PubMed  Google Scholar 

  • Cummins, A., & Craig, C. (2016). Design and implementation of a low cost virtual rugby decision making interactive. In Augmented Reality, Virtual Reality and Computer Graphics: Third International Conference, AVR 2016. Proceedings, Part I, Vol. 9768, 16–32, Springer Publishing. https://doi.org/10.1007/978-3-319-40621-3_2.

  • de Bruin, E. D., Schoene, D., Pichierri, G., & Smith, S. T. (2010). Use of virtual reality technique for the training of motor control in the elderly. Some theoretical considerations. Zeitschrift für Gerontologie und Geriatrie, 43,229–234. https://doi.org/10.1007/s00391-010-0124-7.

    Article  PubMed  Google Scholar 

  • Dehn, L. B., Kater, L., Piefke, M., Botsch, M., Driessen, M., & Beplo, T. (2018). Training in a comprehensive everyday-like virtual reality environment compared to computerized cognitive training for patients with depression. Computers in Human Behavior, 79,40–52. https://doi.org/10.1016/j.chb.2017.10.019.

    Article  Google Scholar 

  • de Kok, I., Hough, J., Hülsmann, F., Waltemate, T., Botsch, M., Schlangen, D., & Kopp, S. (2015). Demonstrating the Dialogue System of the Intelligent Coaching Space. In C. Howes, & S. Larsson (eds.), SemDial, (S. 168–169). Gothenburg: University of Gothenburg.

    Google Scholar 

  • Deleuze, J., Christiaens, M., Nuyens, F., & Billieux, J. (2017). Shoot at first sight! First person shooter players display reduced reaction time and compromised inhibitory control in comparison to other video game players. Computers in Human Behavior, 72,570–576. https://doi.org/10.1016/j.chb.2017.07.027.

    Article  Google Scholar 

  • Dessing, J. C., & Craig, C. M. (2010). Bending it like Beckham: How to visually fool the goalkeeper. PLoS ONE, 5(10), 1–8. https://doi.org/10.1371/journal.pone.0013161.s004.

    Article  Google Scholar 

  • De Vries, A. W., Faber, G., Jonkers, I., Van Dieen, J. H., & Verschueren, S. M. P. (2018). Virtual reality balance training for elderly: similar skiing games elicit different challenges in balance training. Gait und Posture, 59,111–116. https://doi.org/10.1016/j.gaitpost.2017.10.006.

    Article  Google Scholar 

  • Dhawan, A., Cummins, A., Spratford, W., Dessing, J. C., & Craig, C. (2016). Development of a Novel Immersive Interactive Virtual Reality Cricket Simulator for Cricket Batting. Proceedings of the 10th International Symposium on Computer Science in Sports (ISCSS), Advances in Intelligent Systems and Computing, 392, 203–210. https://doi.org/10.1007/978-3-319-24560-7_26.

  • Dörner, R., Jung, B., Grimm, P., Broll, W., & Göbel, M. (2013). Einleitung. In R. Dörner, W. Broll, P. Grimm, & B. Jung (Hrsg.), Virtual und Augmented Reality (VR/AR). Grundlagen und Methoden der Virtuellen und Augmentierten Realität (S. 1–31). Berlin: Springer.

    Google Scholar 

  • Dörner, R., & Steinicke, F. (2013). Wahrnehmungsaspekte von VR. In R. Dörner, W. Broll, P. Grimm, & B. Jung (Hrsg.), Virtual und Augmented Reality (VR/AR). Grundlagen und Methoden der Virtuellen und Augmentierten Realität (S. 33–63). Berlin: Springer.

    Google Scholar 

  • Donath, L., Rössler, R., & Faude, O. (2016). Effects of Virtual Reality training (exergaming) compared to alternative exercise training and passive control on standing balance and functional mobility in health community-dwelling seniors: A meta-analytical review. Sports Medicine, 46(9), 1293–1309. https://doi.org/10.1007/s40279-016-0485-1.

    Article  PubMed  Google Scholar 

  • Duque, G., Boersma, D., Loza-Diaz, G., Hassan, S., Suarez, H., Geisinger, D., et al. (2013). Effects of balance training using a virtual-reality system in older fallers. Clinical Interventions in Aging, 8,257–263. https://doi.org/10.2147/cia.s41453.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandes, A. S., Feiner, S. K. (2016). Combatting VR Sickness through Subtle Dynamic Field-Of-View Modification. In: Proceedings of the IEEE Symposium on 3D User Interfaces, Greenville, SC, USA, 19–20 March 2016. https://doi.org/10.1109/3dui.2016.7460053.

  • Ferreira dos Santos, L., Christ, O., Mate, K., Schmidt, H., Krüger, J., & Dohle, C. (2016). Movement visualization in virtual reality rehabilitation of the lower limb: A systematic review. Biomedical Engineering OnLine, 15(3), 144. https://doi.org/10.1186/s12938-016-0289-4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Franco, M., & Lanier, J. (2017). Model of illusions and virtual reality. Frontiers in Psychology, 30(8), 1125. https://doi.org/10.3389/fpsyg.2017.01125.

    Article  Google Scholar 

  • Gray, R. (2017). Transfer of training from virtual to real baseball batting. Frontiers in Psychology, 8,2183. https://doi.org/10.3389/fpsyg.2017.02183.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grechkin, T. Y., Nguyen, T. D., Plumert, J. M., Cremer, J. F., & Kearny, J. K. (2010). How does presentation method and measurement protocol affect distance estimation in real and virtual environments? ACM Transactions on Applied Perception, 7(4), 1–18. https://doi.org/10.1145/1823738.1823744.

    Article  Google Scholar 

  • Grimm, P., Herold, R., Hummel, J., & Broll, W. (2013). VR-Eingabegeräte. In R. Dörner, W. Broll, P. Grimm, & B. Jung (Hrsg.), Virtual und Augmented Reality (VR/AR). Grundlagen und Methoden der Virtuellen und Augmentierten Realität (S. 97–126). Berlin: Springer.

    Google Scholar 

  • Hülsmann, F., Frank, C., Schack, T., Kopp, S., & Botsch, M. (2016). Multi-Level Analysis of Motor Actions as a Basis for Effective Coaching in Virtual Reality. In P. Chung, A. Soltoggio, C. W. Dawson, Q. Meng, M. Pain, M. (eds.), Advances in Intelligent Systems and Computing. Proceedings of the 10th International Symposium on Computer Science in Sports (ISCSS) Vol. 392, S. 211–214. Cham: Springer International Publishing.

    Google Scholar 

  • Ida, H. (2015). Visuomotor behavior in computer-simulated display. In T. Heinen (ed.), Advances in Visual Perception Research, (S. 233–367). ISBN: 978–1-63482-455-2.

    Google Scholar 

  • Invitto, S., Faggiano, C., Sammarco, S., De Luca, V., & De Paolis, L. T. (2016). Haptic, Virtual Interaction and Motor Imagery: Entertainment Tools and Psychophysiological Testing. Sensors, 16(3). Pii: E394. https://doi.org/10.3390/S.16030394.

  • Kehoe, R., & Rice, M. (2016). Reality, virtual reality, and imagery: Quality of movement in novice dart players. British Journal of Occupational Therapy, 79(4), 244–251. https://doi.org/10.1177/0308022615616820.

    Article  Google Scholar 

  • Kelly, P., Healy, A., Moran, K., & O’Connor, N. E. (2010). A virtual coaching environment for improving golf swing technique. In: SMVC 2010-ACM Workshop on Surreal Media and Virtual Cloning. Firenze, Italy. ISBN: 978–1-4503-0175-6.

    Google Scholar 

  • Kennedy, R. S., Lane, E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology, 3(3), 203–220. https://doi.org/10.1207/s15327108ijap03033.

    Article  Google Scholar 

  • Kilteni, K., Groten, R., & Slater, M. (2012). The sense of embodiment in virtual reality. Presence, 21(4), 373–387.

    Article  Google Scholar 

  • Kojima, T., Hiyama, A., Miura, T., & Hirose, M. (2014). Training Archived Physical Skill through Immersive Virtual Environment. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, A. Kobsa, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. P. Rangang, B. Steffen, D. Terzopulos, D. Tygar, G. Weikum, & S. Yamamoto (Eds.), Lecture notes in computer science. Human interface and the management of information. Information and knowledge in applications and services (S. 51–58). Cham: Springer International Publishing.

    Google Scholar 

  • Komura, T., Lau, R. W. H., Lin, M. C., Majumder, A., Manocha, D., & Xu, W. W. (2015). Virtual reality software and technology. IEEE Computer Graphics and Applications, 35(5), 20–21. https://doi.org/10.1109/mcg.2015.102.

    Article  PubMed  Google Scholar 

  • Lammfromm, R., & Gopher, D. (2011). Transfer of skill from a virtual reality trainer to real juggling. BIO Web of Conferences, 1,00054. https://doi.org/10.1051/bioconf/20110100054.

    Article  Google Scholar 

  • LaViola, J., Jr. (2000). A discussion of cybersickness in virtual environments. ACM SIGCHI Bulletin, 32(1), 47–56.

    Article  Google Scholar 

  • Lee, Y., Choi, W., Lee, K., Song, C., & Lee, S. (2017). Virtual reality training with three-dimensional video games improves postural balance and lower extremity strength in community-dwelling older adults. Journal of Aging and Physical Activity, 19,1–7. https://doi.org/11.1123/apa.2015-0271.

  • Lin, C. J., Woldegiorgis, B. H. (2015). Interaction and visual performance in stereoscopic displays: A review. Journal of Society for Information Display, 23, 319–332. https://doi.org/10.10002/jsid.378.

  • Lin, C. J., & Woldegiorgis, B. H. (2017). Egocentric distance perception and performance of direct pointing in stereoscopic displays. Applied Ergonomics, 64,66–74. https://doi.org/10.1016/j.apergo.2017.05.007.

    Article  PubMed  Google Scholar 

  • Lutz, O. H. M., Schmidt, H., & Krüger, J. (2015). Nutzerzentrierte Gestaltung von VR-Systemen für die motorische Neurorehabilitation. In A. Weisbecker, M. Burmester, & A. Schmidt (Hrsg.), Mensch und Computer 2015 Workshopband (S. 141–143). Stuttgart: Oldenburg Wissenschaftsverlag.

    Google Scholar 

  • Mieg, H. A., & Näf, M. (2005). Experteninterviews (2. Aufl.). ETH Zürich: Institut für Mensch-Umwelt-Systeme (HES).

    Google Scholar 

  • Miles, H. C., Pop, S. R., Watt, S. J., Lawrence, G. P., & John, N. W. (2012). A review of virtual environments for training in ball sports. Computer & Graphics, 36,714–726.

    Article  Google Scholar 

  • Miles, H. C., Pop, S. R., Watt, S. J., Lawrence, G. P., John, N. W., Perrot, V., Mallet, P., Mestre, D. R., & Morgan, K. (2014). Efficacy of a Virtual Environment for Training Ball Passing Skills in Rugby. In M. L. Gavrilova, C. J. Kenneth Tan, Xiaaoyang Mao, & Lichan Hong (Eds.), Transactions on Computational Science XXIII (S. 98–117). Berlin: Springer.

    Google Scholar 

  • Milner, A. D., & Goodale, M. A. (2008). Two visual systems re-viewed. Neuropsychologia, 46,774–785. https://doi.org/10.1016/j.neuropsychologia.2007.10.005.

    Article  PubMed  CAS  Google Scholar 

  • Mohler, B. J., Thompson, W. B., Creem-Regehr, S. H., Pick, H. L., Jr., & Warren, W. H., Jr. (2007). Visual flow influences gait transition speed and preferred walking speed. Experimental Brain Research, 181(2), 221–228. https://doi.org/10.1007/s00221-007-0917-0.

    Article  PubMed  Google Scholar 

  • Molina, K. I., Ricci, N. A., de Moraes, S. A., & Perracini, M. R. (2014). Virtual reality using games for improving physical functioning in older adults: a systematic review. Journal of NeuroEngineering and Rehabilitation, 15(11), 156. https://doi.org/10.1186/1743-0003-11-156.

    Article  Google Scholar 

  • Mukherjee, M., Siu, K. C., Katsavelis, D., Fyaad, P., & Stergiou, N. (2011). The influence of visual perception of self-motion on locomotor adaptation to unilateral limb loading. Journal of Motor Behavior, 43(2), 101–111.

    Article  PubMed  Google Scholar 

  • Neth, C. T., Souman, J. L., Engel, D., Kloos, U., Bülthoff, H. H., & Mohler, B. J. (2012). Velocity-dependent dynamic curvature gain for redirected walking. IEEE Transactions on Visualization and Computer Graphics, 18(7), 1041–1052. https://doi.org/10.1109/tvcg.2011.275.

    Article  PubMed  Google Scholar 

  • Petri, K., & Witte K. (2016). Virtuelle Realität im Sport: Möglichkeiten und Grenzen. In K. Witte, N. Bandow, & J. Edelmann-Nusser (Hrsg.), Sportinformatik XI (S. 125–131). Shaker Verlag. ISBN: 978–3-8440-4955-8.

    Google Scholar 

  • Petri, K., Mattert, S., Heinisch, P., Salb, S., Bandow, N., Emmermacher, P., Masik, S., Danneberg, M., Zhang, L., Brunnett, G., & Witte, K. (2016). Evaluation eines autonom interagierenden Gegners (AIG) in Virtueller Realität (VR) im Karate-Kumite. In K. Witte, N. Bandow, & J. Edelmann-Nusser, (Hrsg.), Sportinformatik XI (S. 143–149). Shaker Verlag. ISBN: 978–3-8440-4955-8.

    Google Scholar 

  • Petri, K., Witte, K., Bandow, N., Emmermacher, P., Masik, S., Danneberg, M., Salb, S., Zhang, L., & Brunnett, G. (2017). Development of an autonomous character in karate kumite. Proceedings of the 11th International Symposium on Computer Science in Sport (IACSS 2017), Advances in Intelligent Systems and Computing 663. Springer International Publishing. ISBN: 978–3-319-67845-0. https://doi.org/10.1007/978-3-319-67846-1_13.

  • Pietschmann, D. (2009). Das Erleben virtueller Welten. Involvierung, Immersion und Engagement in Computerspielen. Boizenburg: Hülsbusch.

    Google Scholar 

  • Pinder, R. A., Davids, K., Renshaw, I., & Araùjo, D. (2011). Representative learning design and functionality of research and practice in sport. Journal of Sport and Exercise Psychology, 33(1), 146–155.

    Article  PubMed  Google Scholar 

  • Plass, J. L., Homer, B. D., & Hayward, E. O. (2009). Design factors for educationally effective animations and simulations. Journal of Computing in Higher Education, 21(1), 31–61. https://doi.org/10.1007/s12528-009-9011-x.

    Article  Google Scholar 

  • Plummer, P. (2017). Gait and balance training using virtual reality is more effective for improving gait and balance ability after stroke than conventional training without virtual reality. Journal of Physiotherapy, 63,114. https://doi.org/10.1016/j.jphys.2017.02.010.

    Article  PubMed  Google Scholar 

  • Pronost, N., Multon, F., Li, Q., Geng, W., Kulpa, R., Domont, G. (2008). Interactive animation of virtual characters: Application to virtual kung-fu fighting. Proceedings of the International Conference on Cyberworlds, Hangzhou, China 2008. https://doi.org/10.1109/cw.2008.33.

  • Rauter, G., Sigrist, R., Koch, C., Crivelli, F., van Raai, M., Riener, R., & Wolf, P. (2013). Transfer of complex skill learning from virtual to real rowing. PLOS ONE, 8(12), e82145. https://doi.org/10.1371/journal.pone.0082145.

  • Rebenitsch, L., & Owen, C. (2016). Review on cybersickness in applications and visual displays. Virtual Reality, 20, 101–125. https://doi.org/10.1007/S.10055-016-0285-9.

  • Renner, R. S., Velichkovsky, B. M., & Helmert, J. R. (2013). The perception of egocentric distances in Virtual Environments – a Review. ACM Computing Surveys, 46(2), 23, 1–40. https://doi.org/10.1145/2543581.2543590.

  • Robert, M. T., Ballaz, L., & Lemay, M. (2016). The effect of viewing a virtual environment through a head-mounted display on balance. Gait & Posture, 48, 261–266. https://doi.org/10.1016/j.gaitpost.2016.06.10.

  • Ruffaldi, E., & Filippeschi, A. (2013). Structuring a virtual environment for sport training: A case study on rowing technique. Robotics and Autonomous Systems, 61,390–397.

    Article  Google Scholar 

  • Ruffaldi, E., Filippeschi, A., Varlet, M., Hoffmann, C., & Bardy, B. (2013). Design and evaluation of a multimodal virtual reality platform for rowing training. In M. Bergamasco, B. Bardy, & D. Gopher (eds.), Skill Training in Multimodal Virtual Environments (S. 173–186). https://doi.org/10.1201/b12704-16.

  • Saldana, S. J., Marsh, A. P., Rejeski, W. J., Haberl, J. K., Wu, P., Rosenthal, S., et al. (2017). Assessing balance through the use of a low-cost head-mounted display in older adults: a pilot study. Clinical Interventions in Aging, 12,1363–1370.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schubert, T. W., Friedmann, F., & Regenbrecht, H. T. (1999). Decomposing the sense of presence: Factor analytic insights. 2nd International Workshop on Presence, University of Essex, UK, 6–7 April 1999.

    Google Scholar 

  • Schuemie, M. J., van der Straaten, P., Krijn, M., & van der Mast, C. A. P. G. (2001). Research on presence in virtual reality: A survey. Cyber psychology & Behavior, 4(2), 183–201. https://doi.org/10.1089/109493101300117884.

    Article  CAS  Google Scholar 

  • Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., & Blake, A. (2011). Real-Time Human Pose Recognition in Parts from a Single Depth Image. Proceedings of the IEEE Conference Computer Vision and Pattern Recognition (CVPR), S. 1297–1304.

    Google Scholar 

  • Shotton, J., Girshick, R., Fitzgibbon, A., Sharp, T., Cook, M., Finocchio, M., et al. (2012). Efficient human pose estimation from single depth images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(12), 2821–2840. https://doi.org/10.1109/tpami.2012.241.

    Article  Google Scholar 

  • Sigrist, R., Rauter, G., Marchal-Crespo, L., Riener, R., & Wolf, P. (2015). Sonification and haptic feedback in addition to visual feedback enhances complex motor task learning. Experimental Brain Research, 233(3), 909–925. https://doi.org/10.1007/s00221-014-4167-7.

    Article  PubMed  Google Scholar 

  • Singh, D. K. A., Rajaratnam, B. S., Palaniswamy, V., Pearson, H., Raman, V. P., & Bong, P. S. (2012). Participating in a virtual reality balance exercise program can reduce risk and fear of falls. Maturitas, 73,239–243. https://doi.org/10.1016/.j.maturitas.2012.07.011.

    Article  PubMed  Google Scholar 

  • Slater, M., Spanling, B., Sanchez-Vives, M. V., & Blanke, O. (2010). First person experience of body transfer in virtual reality. PLoS ONE, 5(5), e10564. https://doi.org/10.1371/journal.pone.0010564.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steptoe, W., Steed, A., & Slater, M. (2013). Human tails: Ownership and control of extended humanoid avatars. IEEE Transactions on Visualization and Computer Graphics, 19(4), 583–590.

    Article  PubMed  Google Scholar 

  • Storch, M., Benita, C., Hüther, G., & Tschacher, W. (2011). Embodiment – Die Wechselwirkung von Körper und Psyche verstehen und nutzen. Bern: Huber. (HOGEFE Verlagsgruppe), ISBN: 978-3-456-84837-2.

    Google Scholar 

  • Tanaka, K. (2017). 3D action reconstruction using virtual reality to assist training. Proceedings of IEEE Virtual Reality, 395–396. https://doi.org/10.1109/vr.2017.7892343.

  • Thompson, J. D., & Franz, J. R. (2017). Do kinematic metrics of walking balance adapt to perturbed optical flow? Human Movement Science, 54,34–40. https://doi.org/10.1016/j.humov.2017.03.004.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tidoni, E., Scandola, M., Orvalho, V., Candidi, M. (2016). Apparent biological motion in first and third person perspective. I-Perception, 1–6. https://doi.org/10.1177/204/6695/6669156.

  • Tirp, J., Steingrover, C., Wattie, N., Baker, J., & Schorer, J. (2015). Virtual realities as optimal learning environment in sport – A transfer study of virtual and real dart throwing. Psychological Test and Assessment Modeling, 57,57–69.

    Google Scholar 

  • Varlet, M., Filippeschi, A., Ben-Sadun, G., Ratto, M., Marin, L., Ruffaldi, E., et al. (2013). Virtual reality as a tool to learn interpersonal coordination: Example of team rowing. Presence: Teleoperators and Virtual Environments, 22(3), 202–215. https://doi.org/10.1162/pres_a_00151.

    Article  Google Scholar 

  • van der Kamp, J., Rivas, F., van Doorn, H., & Savelsbergh, G. (2008). Ventral and dorsal system contributions to visual anticipation in fast ball sports. International Journal of Sport Psychology, 39(2), 100–130.

    Google Scholar 

  • Vignais, N., Bideau, B., Craig, C., Brault, S., Multon, F., Delamarche, P., et al. (2009). Does the level of graphical detail of a virtual handball thrower influence goalkeeper’s motor response? Journal of Sports Science and Medicine, 8,501–508.

    PubMed  Google Scholar 

  • Waltemate, T., Hülsmann, F., Pfeiffer, T., Kopp, S., Botsch, M. (2015). Realizing a Low-latency Virtual Reality Environment for Motor Learning. Proceedings of ACM Symposium on Virtual Reality Software and Technology (S. 139–147). ACM.

    Google Scholar 

  • Waltemate, T., Senna, I., Hülsmann, F., Rohde, M., Kopp, S., Ernst, M., & Botsch, M. (2016). The impact on perceptual judgements and motor performance in closed-loop interactions in Virtual Reality. VRST 2016 Garching, Germany. ISBN: 978–1-4503-4491-3/16/11. https://doi.org/10.1145/2993369.2993381.

  • Wang, J. (2012). Research on Application of Virtual Reality Technology in Competitive Sports. Procedia Engineering, 29,3659–3662.

    Article  Google Scholar 

  • Watson, G., Brault, S., Kulpa, R., Bideau, B., Butterfield, J., & Craig, C. (2011). Judging the „passability“ of dynamic gaps in a virtual rugby environment. Human Movement Science, 30,942–956. https://doi.org/10.1016/j.humov.2010.08.004.

    Article  PubMed  Google Scholar 

  • Witkowski, K., Sobecki, J., Maslinski, J., Cieslinski, W. B., Rokita, A., & Kalina, R. M. (2016). The use of augmented-reality technology to improve judo techniques. Premises, assumptions, methodology, research tools, preliminary scenarios – the first stage of the study. Archieves of Budo, 12,355–367.

    Google Scholar 

  • Witte, K., Emmermacher, P., Bandow, N., & Masik, S. (2012). Usage of virtual reality technology to study reactions in karate-kumite. International Journal of Sports Science and Engineering, 6(1), 017–024.

    Google Scholar 

  • Witte, K., Salb, S., Petri, K., Bandow, N., Emmermacher, P., Zhang, L., Brunnett, G., & Masik, S. (2016). Analysis of anticipation by integration of Eye-Tracking in virtual reality – a future method. ECSS 2016, Vienna.

    Google Scholar 

  • Yanovich, E., & Ronen, O. (2015). The use of virtual reality in motor learning: a multiple pilot study review. Advances in Physical Education, 5,188–193. https://doi.org/10.4236/ape.2015.53023.

    Article  Google Scholar 

  • Zaal, F. T. J. M., & Bootsma, R. J. (2011). Virtual reality as a tool for the study of perception-action: The case of running to catch fly balls. Presence: Teleoperators and Virtual Environments, 20(1), 93–103. https://doi.org/10.1162/pres_a_00037.

    Article  Google Scholar 

  • Zhang, L., Brunnett, G., Petri, K., Danneberg, M., Masik, S., Bandow, N., et al. (2018). KaraKter: An autonomously interacting karate kumite character for VR-based training and research. Computer & Graphics, 72,59–69. https://doi.org/10.1016/j.cag.2018.01.008.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Witte .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Petri, K., Witte, K. (2018). Anwendung virtueller Realität im Sport. In: Ausgewählte Themen der Sportmotorik für das weiterführende Studium (Band 2). Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57876-6_6

Download citation

Publish with us

Policies and ethics