Skip to main content

EMOIO Research Project

An interface to the world of computers

  • Chapter
Digital Transformation

Summary

Adaptive assistance systems are able to support the user in a wide range of different situations. These systems take external information and attempt to deduce user intentions from the context of use, without requiring or allowing direct feedback from the user. For this reason, it remains unclear whether the system’s behavior was in accordance with the user’s intentions – leading to problems in the interaction between human and adaptive technology. The goal of the EMOIO project is to overcome potential barriers of use with the aid of neuroscientific methods. Merging ergonomics with the neurosciences into the new field of neuroergonomics research produces enormous potential for innovation, to make the symbiosis between humans and technology more intuitive. To this end, brain-computer interfaces (BCIs) offer a new generation of interfaces between humans and technology. BCIs make it possible to register mental states such as attention and emotions and transmit this information directly to a technological system. So-called neuroadaptive systems continuously use this information in order to adjust the behavior, functions or the content of an interactive system accordingly. A neuroadaptive system is being developed by a consortium of partners from research and industry as part of the EMOIO project. The goal of the system is to recognize, based on the users’ brain activity, whether system-initiated behaviors are approved or rejected. The system is able to use this information to provide the person with the best possible assistance and thus adapt to individual and situational demands. To do this, neuroscientific methods such as electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) are being evaluated with respect to their suitability for measuring emotions (approval/rejection).

In addition, a corresponding algorithm is being developed for real-time emotional recognition. The miniaturization and resilience of the EEG and fNIRS sensors are also being promoted. Finally, the developed system is being explored in three different areas of application: web-based adaptive user interfaces, vehicle interaction, and human-robot collaboration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Sources and literature

  1. R. Parasuraman and M. Rizzo, Eds., Neuroergonomics: the brain at work. New York: Oxford University Press, 2008.

    Google Scholar 

  2. M. Hassenzahl, „User experience (UX): towards an experiential perspective on product quality,“ 2008, p. 11.

    Google Scholar 

  3. K. Pollmann, M. Vukelić, N. Birbaumer, M. Peissner, W. Bauer, and S. Kim, „fNIRS as a Method to Capture the Emotional User Experience: A Feasibility Study,“ in Human-Computer Interaction. Novel User Experiences, vol. 9733, M. Kurosu, Ed. Cham: Springer International Publishing, 2016, pp. 37–47.

    Google Scholar 

  4. S. K. Kane, J. O. Wobbrock, and I. E. Smith, „Getting off the treadmill: evaluating walking user interfaces for mobile devices in public spaces,“ 2008, p. 109.

    Google Scholar 

  5. G. Lehmann, M. Blumendorf, and S. Albayrak, „Development of context-adaptive applications on the basis of runtime user interface models,“ 2010, p. 309.

    Google Scholar 

  6. J. Nichols and B. A. Myers, „Creating a lightweight user interface description language: An overview and analysis of the personal universal controller project,“ ACM Trans. Comput.-Hum. Interact., vol. 16, no. 4, pp. 1–37, Nov. 2009.

    Google Scholar 

  7. N. Birbaumer et al., „A spelling device for the paralysed,“ Nature, vol. 398, no. 6725, pp. 297–298, Mar. 1999.

    Google Scholar 

  8. A. Ramos-Murguialday et al., „Brain-machine interface in chronic stroke rehabilitation: A controlled study: BMI in Chronic Stroke,“ Ann. Neurol., vol. 74, no. 1, pp. 100–108, Jul. 2013.

    Google Scholar 

  9. A. Kübler et al., „Patients with ALS can use sensorimotor rhythms to operate a braincomputer interface,“ Neurology, vol. 64, no. 10, pp. 1775–1777, May 2005.

    Google Scholar 

  10. J. I. Münßinger et al., „Brain Painting: First Evaluation of a New Brain–Computer Interface Application with ALS-Patients and Healthy Volunteers,“ Front. Neurosci., vol. 4, 2010.

    Google Scholar 

  11. M. Bensch et al., „Nessi: An EEG-Controlled Web Browser for Severely Paralyzed Patients,“ Comput. Intell. Neurosci., vol. 2007, pp. 1–5, 2007.

    Article  Google Scholar 

  12. N. Birbaumer, S. Ruiz, and R. Sitaram, „Learned regulation of brain metabolism,“ Trends Cogn. Sci., vol. 17, no. 6, pp. 295–302, Jun. 2013.

    Google Scholar 

  13. S. Ruiz et al., „Acquired self-control of insula cortex modulates emotion recognition and brain network connectivity in schizophrenia,“ Hum. Brain Mapp., vol. 34, no. 1, pp. 200–212, Jan. 2013.

    Google Scholar 

  14. S. W. Choi, S. E. Chi, S. Y. Chung, J. W. Kim, C. Y. Ahn, and H. T. Kim, „Is alpha wave neurofeedback effective with randomized clinical trials in depression? A pilot study,“ Neuropsychobiology, vol. 63, no. 1, pp. 43–51, 2011.

    Google Scholar 

  15. T. O. Zander and C. Kothe, „Towards passive brain-computer interfaces: applying braincomputer interface technology to human-machine systems in general,“ J. Neural Eng., vol. 8, no. 2, p. 025005, Apr. 2011.

    Google Scholar 

  16. C. Dijksterhuis, D. de Waard, K. A. Brookhuis, B. L. J. M. Mulder, and R. de Jong, „Classifying visuomotor workload in a driving simulator using subject specific spatial brain patterns,“ Front. Neurosci., vol. 7, 2013.

    Google Scholar 

  17. C. Berka et al., „EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks,“ Aviat. Space Environ. Med., vol. 78, no. 5 Suppl, pp. B231-244, May 2007.

    Google Scholar 

  18. S. Haufe et al., „Electrophysiology-based detection of emergency braking intention in real-world driving,“ J. Neural Eng., vol. 11, no. 5, p. 056011, Oct. 2014.

    Google Scholar 

  19. T. O. Zander, L. R. Krol, N. P. Birbaumer, and K. Gramann, „Neuroadaptive technolo- gy enables implicit cursor control based on medial prefrontal cortex activity,“ Proc. Natl. Acad. Sci., p. 201605155, Dec. 2016.

    Google Scholar 

  20. R. W. Picard, E. Vyzas, and J. Healey, „Toward machine emotional intelligence: analysis of affective physiological state,“ IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 10, pp. 1175–1191, Oct. 2001.

    Google Scholar 

  21. H. Förstl, Ed., Theory of mind: Neurobiologie und Psychologie sozialen Verhaltens, 2., Überarb. und aktualisierte Aufl. Berlin: Springer, 2012.

    Google Scholar 

  22. T. O. Zander, J. Brönstrup, R. Lorenz, and L. R. Krol, „Towards BCI-Based Implicit Control in Human–Computer Interaction,“ in Advances in Physiological Computing, S. H. Fairclough and K. Gilleade, Eds. London: Springer London, 2014, pp. 67–90.

    Google Scholar 

  23. K. Pollmann, D. Ziegler, M. Peissner, and M. Vukelić, „A New Experimental Paradigm for Affective Research in Neuro-adaptive Technologies,“ 2017, pp. 1–8.

    Google Scholar 

  24. K. Pollmann, M. Vukelic, and M. Peissner, „Towards affect detection during humantechnology interaction: An empirical study using a combined EEG and fNIRS approach,“ 2015, pp. 726–732.

    Google Scholar 

  25. M. Mather and L. L. Carstensen, „Aging and motivated cognition: the positivity effect in attention and memory,“ Trends Cogn. Sci., vol. 9, no. 10, pp. 496–502, Oct. 2005.

    Google Scholar 

  26. M. Vukelić, K. Pollmann, M. Peissner, „Towards brain-based interaction between humans and technology: does age matter?,“ 1st International Neuroergonomics Conference, Oct. 2016.

    Google Scholar 

  27. C. Brunner et al., „BNCI Horizon 2020: towards a roadmap for the BCI community,“ Brain-Comput. Interfaces, vol. 2, no. 1, pp. 1–10, Jan. 2015.

    Google Scholar 

  28. A. Sonnleitner, et al., „EEG alpha spindles and prolonged brake reaction times during auditory distraction in an on-road driving study“. Accid. Anal. Prev. 62, 110–118, 2014

    Article  Google Scholar 

  29. S. Debener, R. Emkes, M. De Vos, and M. Bleichner, „Unobtrusive ambulatory EEG using a smartphone and flexible printed electrodes around the ear,“ Sci. Rep., vol. 5, no. 1, Dec. 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Cite this chapter

Bauer, W., Vukelić, M. (2019). EMOIO Research Project. In: Neugebauer, R. (eds) Digital Transformation. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58134-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58134-6_9

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58133-9

  • Online ISBN: 978-3-662-58134-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics