Skip to main content

Proof-Net as Graph, Taylor Expansion as Pullback

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2019)

Abstract

We introduce a new graphical representation for multiplicative and exponential linear logic proof-structures, based only on standard labelled oriented graphs and standard notions of graph theory. The inductive structure of boxes is handled by means of a box-tree. Our proof-structures are canonical and allows for an elegant definition of their Taylor expansion by means of pullbacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The folklore attributes the definition of graphs with half-edges to Kontsevitch and Manin, but the idea can actually be traced back to Grothendieck’s dessins d’enfant.

  2. 2.

    This implies that \(\mathsf {c}(i_j) = \mathsf {c}(i_k)\) for all \(1 \leqslant j,k \leqslant n\).

  3. 3.

    The structured graph |R| of R is more structured (it is also labeled, colored, ordered) than an oriented graph such as \(\mathcal {A}^{\circlearrowleft }\). When we talk of a morphism between two structured graphs where one of the two, say \(\tau \), is less structured than the other, say \(\sigma \), we mean that \(\tau \) must be only considered with the same structure as \(\sigma \). Thus, in this case, \(\mathsf {box}\) is a morphism from \((||R ||, \mathsf {o}_{R})\)—discarding \(\mathsf {\ell }_{R}\), \(\mathsf {c}_{R}\), \(<_{R}\)—to \(\mathcal {A}^{\circlearrowleft }\).

  4. 4.

    This means that for any input flag \(f'\) in \(\mathcal {A}\) there is exactly one input f of some vertex of type in |R| such that \(\mathsf {box}_F(f) = f'\); but \(\mathsf {box}_{F}(f)\) need not be an input flag in \(\mathcal {A}\) for any input f of some vertex of type in |R| (by definition of morphism, \(\mathsf {box}_{F}(f)\) is necessarily an input flag in \(\mathcal {A}^{\circlearrowleft }\)). Intuitively, a vertex v of type represents a generalized co-contraction (in particular, a co-weakening if it has no inputs), and a box is associated with (and only with) each input f of v such that \(\mathsf {box}_{F}(f)\) is an input flag in \(\mathcal {A}\) (and not only in \(\mathcal {A}^{\circlearrowleft }\)): f represents the principal door (in the border) of such a box (note that for \(f' \in F_{||R ||}\), if \(f' \ne f\) then \(\mathsf {box}_{F}(f') \ne \mathsf {box}_{F}(f)\) and that \(\mathsf {box}_V(\partial _{||R ||}\circ j_{||R ||}(f)) \ne \mathsf {box}_V(\partial _{||R ||}(f))\) for such a f).

  5. 5.

    Roughly, it says that the border of a box is made of (inputs of) vertices of type or .

  6. 6.

    According to the constraints on \(\mathsf {box}_{R}\), this condition can be fulfilled only by inputs of a cell of type (a -cell, for short) in |R|, and an input of a -cell need not fulfill it; in particular, if R is a \(\mathsf {ME}\mathsf {LL} \) proof-structure, then this condition is fulfilled by all and only the inputs of -cells (and such an input is unique for any -cell) in |R|; but if R is a \(\mathsf {Di}\mathsf {LL} _0\) proof-structure, then this condition is not fulfilled by any flag in |R| (since \(\mathcal {A}_{R}\) has no inputs) and so \(\mathsf {box}_{R}\) is a graph morphism associating the root of \(\mathcal {A}_{R}\) with any vertex of |R|. Therefore, in a \(\mathsf {Di}\mathsf {LL} _0\) proof-structure \(\rho = (|\rho |,\mathcal {A}_{\rho },\mathsf {box}_{\rho })\), \(\mathcal {A}_{\rho }\) and \(\mathsf {box}_{\rho }\) do not induce any structure on \(|\rho |\): \(\rho \) can be identified with \(|\rho |\).

  7. 7.

    We write only the graph \(|R_\pi |\) of \(R_\pi \), because its box-tree \(\mathcal {A}_{R_\pi }\) and its box-function \(\mathsf {box}_{R_\pi }\) are trivial (see Footnote 6).

  8. 8.

    This means that \(\tau _t^{\circlearrowleft }\) and \(\mathcal {A}_{R}^\circlearrowleft \) are considered as (unoriented) graphs, see also Footnote 3.

References

  1. Accattoli, B.: Compressing polarized boxes. In: 28th Annual Symposium on Logic in Computer Science (LICS 2013), pp. 428–437. IEEE Computer Society (2013). https://doi.org/10.1109/LICS.2013.49

  2. Accattoli, B.: Linear logic and strong normalization. In: 24th International Conference on Rewriting Techniques and Applications (RTA 2013). LIPIcs, vol. 21, pp. 39–54. Schloss Dagstuhl (2013). https://doi.org/10.4230/LIPIcs.RTA.2013.39

  3. Béchet, D.: Minimality of the correctness criterion for multiplicative proof nets. Math. Struct. Comput. Sci. 8(6), 543–558 (1998)

    Article  MathSciNet  Google Scholar 

  4. Borisov, D.V., Manin, Y.I.: Generalized Operads and Their Inner Cohomomorphisms, pp. 247–308. Birkhäuser Basel, Basel (2008). https://doi.org/10.1007/978-3-7643-8608-5_4

  5. Boudes, P.: Thick subtrees, games and experiments. In: Curien, P.-L. (ed.) TLCA 2009. LNCS, vol. 5608, pp. 65–79. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02273-9_7

    Chapter  MATH  Google Scholar 

  6. de Carvalho, D., Tortora de Falco, L.: The relational model is injective for multiplicative exponential linear logic (without weakenings). Ann. Pure Appl. Log. 163(9), 1210–1236 (2012)

    Article  MathSciNet  Google Scholar 

  7. de Carvalho, D.: Taylor expansion in linear logic is invertible. Log. Methods Comput. Sci. 14(4), 1–73 (2018). https://doi.org/10.23638/LMCS-14(4:21)2018

    Article  MathSciNet  MATH  Google Scholar 

  8. de Carvalho, D., Pagani, M., Tortora de Falco, L.: A semantic measure of the execution time in linear logic. Theor. Comput. Sci. 412(20), 1884–1902 (2011). https://doi.org/10.1016/j.tcs.2010.12.017

    Article  MathSciNet  MATH  Google Scholar 

  9. Danos, V., Regnier, L.: The structure of multiplicatives. Arch. Math. Log. 28(3), 181–203 (1989). https://doi.org/10.1007/BF01622878

    Article  MathSciNet  MATH  Google Scholar 

  10. Danos, V., Regnier, L.: Proof-nets and the Hilbert Space. In: Proceedings of the Workshop on Advances in Linear Logic, pp. 307–328. Cambridge University Press (1995)

    Google Scholar 

  11. Ehrhard, T., Regnier, L.: Uniformity and the Taylor expansion of ordinary lambda-terms. Theor. Comput. Sci. 403(2–3), 347–372 (2008)

    Article  MathSciNet  Google Scholar 

  12. Ehrhard, T.: A new correctness criterion for MLL proof nets. In: Joint Meeting of the Twenty-Third Conference on Computer Science Logic and the Twenty-Ninth Symposium on Logic in Computer Science (CSL-LICS 2014), pp. 38:1–38:10. ACM (2014). https://doi.org/10.1145/2603088.2603125

  13. Ehrhard, T., Regnier, L.: Differential interaction nets. Theor. Comput. Sci. 364(2), 166–195 (2006). https://doi.org/10.1016/j.tcs.2006.08.003

    Article  MathSciNet  MATH  Google Scholar 

  14. Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–101 (1987). https://doi.org/10.1016/0304-3975(87)90045-4

    Article  MathSciNet  MATH  Google Scholar 

  15. Guerrieri, G., Pellissier, L., Tortora de Falco, L.: Computing connected proof(-structure)s from their Taylor expansion. In: 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016). LIPIcs, vol. 52, pp. 20:1–20:18. Schloss Dagstuhl (2016). https://doi.org/10.4230/LIPIcs.FSCD.2016.20

  16. Lafont, Y.: Interaction nets. In: Seventeenth Annual ACM Symposium on Principles of Programming Languages (POPL 1990), pp. 95–108. ACM Press (1990). https://doi.org/10.1145/96709.96718

  17. Laurent, O.: Polarized proof-nets and lambda-\(\mu \)-calculus. Theor. Comput. Sci. 290(1), 161–188 (2003). https://doi.org/10.1016/S0304-3975(01)00297-3

    Article  MATH  Google Scholar 

  18. Mazza, D.: Simple parsimonious types and logarithmic space. In: 24th Annual Conference on Computer Science Logic (CSL 2015). LIPIcs, vol. 41, pp. 24–40. Schloss Dagstuhl (2015). https://doi.org/10.4230/LIPIcs.CSL.2015.24

  19. Mazza, D., Pagani, M.: The separation theorem for differential interaction nets. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 393–407. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75560-9_29

    Chapter  MATH  Google Scholar 

  20. Montelatici, R.: Polarized proof nets with cycles and fixpoints semantics. In: Hofmann, M. (ed.) TLCA 2003. LNCS, vol. 2701, pp. 256–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44904-3_18

    Chapter  MATH  Google Scholar 

  21. Pagani, M., Tasson, C.: The inverse Taylor expansion problem in linear logic. In: Proceedings of the 24th Annual Symposium on Logic in Computer Science (LICS 2009), pp. 222–231. IEEE Computer Society (2009). https://doi.org/10.1109/LICS.2009.35

  22. Pagani, M.: The cut-elimination theorem for differential nets with promotion. In: Curien, P.-L. (ed.) TLCA 2009. LNCS, vol. 5608, pp. 219–233. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02273-9_17

    Chapter  Google Scholar 

  23. Pagani, M., Tortora de Falco, L.: Strong normalization property for second order linear logic. Theor. Comput. Sci. 411(2), 410–444 (2010). https://doi.org/10.1016/j.tcs.2009.07.053

    Article  MathSciNet  MATH  Google Scholar 

  24. Solieri, M.: Geometry of resource interaction and Taylor-Ehrhard-Regnier expansion: a minimalist approach. Math. Struct. Comput. Sci. 28(5), 667–709 (2018). https://doi.org/10.1017/S0960129516000311

    Article  MathSciNet  MATH  Google Scholar 

  25. Tortora de Falco, L.: The additive multiboxes. Ann. Pure Appl. Log. 120(1–3), 65–102 (2003). https://doi.org/10.1016/S0168-0072(02)00042-8

    Article  MathSciNet  MATH  Google Scholar 

  26. Tranquilli, P.: Intuitionistic differential nets and lambda-calculus. Theor. Comput. Sci. 412(20), 1979–1997 (2011). https://doi.org/10.1016/j.tcs.2010.12.022

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Pellissier .

Editor information

Editors and Affiliations

Appendices

Technical Appendix

A Computing a Pullback in the Category of Graphs

The category of graphs has all pullbacks, a fact that we use extensively. We recall here all the definitions and facts that are packed in that affirmation.

Definition 11

(pullback). Let \(\mathcal {C}\) be a category. Let \(X\), \(Y\), and \(Z\) be three objects of \(\mathcal {C}\) and \(f:X\rightarrow Z\) and \(g:Y\rightarrow Z\) be two arrows of \(\mathcal {C}\).

The pullback of \(X\) and \(Y\) along \(f\) and \(g\) is the triple such that the diagram

figure s

commutes and, for every other \((B,h : B \rightarrow X,k : B \rightarrow Y)\) making the same diagram commute, there exists a unique arrow \(p:B \rightarrow A\) such that:

figure t

It is unique (up to unique isomorphism), and it is customary to write \(X \times _{Z} Y\) a pullback of \(X\) and \(Y\) over \(Z\) (leaving \(f\) and \(g\) implicit) and a pullback diagram with a corner:

figure u

All pullbacks exist in the category of graphs. Explicitely, let \(\tau = (F_{\tau }, V_{\tau }, \partial _{\tau }, j_{\tau })\), \(\sigma = (F_{\sigma }, V_{\sigma }, \partial _{\sigma }, j_{\sigma })\) and \(\rho = (F_{\rho }, V_{\rho }, \partial _{\rho }, j_{\rho })\) be three graphs and \(g: \sigma \rightarrow \tau \), \(h : \rho \rightarrow \tau \) be two graph morphisms. Consider the two sets

$$\begin{aligned} F&= \left\{ (f_1, f_2) \in F_{\sigma } \times F_{\rho } \mid g_F(f_1) = h_F(f_2) \right\} \\ V&= \left\{ (v_1, v_2) \in V_{\sigma } \times V_{\rho } \mid g_V(v_1) = h_V(v_2) \right\} \end{aligned}$$

They are both equiped with two projections, which we will write \(\pi _{\sigma }^F, \pi _{\rho }^F, \pi _{\sigma }^V, \pi _{\rho }^V\). Let \(f\in F\).

$$\begin{aligned} g_V \circ \partial _{\sigma }\circ \pi _{\sigma }^F (f)&= \partial _{\tau } \circ g_F \circ \pi _{\sigma }^F (f) \text {, because g is a graph morphism}\\&= \partial _{\tau } \circ h_F \circ \pi _{\rho }^F (f)\text {, by definition of F}\\&= h_V \circ \partial _{\rho } \circ \pi _{\rho }^F(f) \text {, because h is a graph morphism} \end{aligned}$$

Hence, we can define \(\partial : F \rightarrow V\) by \(\partial (f) = (\partial _{\sigma }\circ \pi _{\sigma }^F (f), \partial _{\rho } \circ \pi _{\rho }^F(f)) \). In the same way, we define \(j : F \rightarrow F\) by \(j(f) = (j_{\sigma } \circ \pi _{\sigma }^F(f), j_{\rho } \circ \pi _{\rho }^F(f))\), and check that it is an involution.

Hence \(\sigma \times _{\tau } \rho = (F,V,\partial ,j)\) is a graph and \(\pi _{\sigma } = (\pi _{\sigma }^F, \pi _{\sigma }^V) : \sigma \times _{\tau } \rho \rightarrow \sigma \) and \(\pi _{\rho } = (\pi _{\rho }^F, \pi _{\rho }^V) : \sigma \times _{\tau } \rho \rightarrow \rho \) are graph morphisms.

figure v

Consider now any \(\mu = (F_{\mu },V_{\mu },\partial _{\mu },j_{\mu })\) such that the diagram

figure w

commutes. For \(f\in F_{\mu }\), let \(r_F(f) = (p_F(f),q_F(f))\) and for \(v\in V_{\mu }\), let \(r_V(v) = (p_V(v),q_V(v))\). We check that it defines a graph morphism \(r:\mu \rightarrow \sigma \times _{\tau } \rho \) and it factorises \(p\) and \(q\).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guerrieri, G., Pellissier, L., Tortora de Falco, L. (2019). Proof-Net as Graph, Taylor Expansion as Pullback. In: Iemhoff, R., Moortgat, M., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2019. Lecture Notes in Computer Science(), vol 11541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59533-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-59533-6_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-59532-9

  • Online ISBN: 978-3-662-59533-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics