Skip to main content

An Insight into Characterizations and Applications of Nanoparticulate Targeted Drug Delivery Systems

  • Chapter
  • First Online:
Nanotechnology Characterization Tools for Tissue Engineering and Medical Therapy

Abstract

Nanoparticle-based targeted drug delivery system (DDS) is one of the major applications of nanotechnology in modern biomedical research. Basically, it comprises of bare or functionalized biocompatible nanoparticles with or without targeting ligands and one or more chemotherapeutic drugs. While the targeting efficacy of DDS without targeting ligands involves passive targeting through enhanced permeability and retention (EPR) effect, DDS containing targeting ligands (e.g., protein, antibodies, peptides, and small molecules) relies on their specificity to cell surface receptors. To achieve combination therapy, two or more chemotherapeutic drugs (exhibiting synergistic effect) are often loaded on nanoparticulate DDS. Besides site-specific delivery, the release of drugs from the DDS and stability of nanomaterials are also important factors to develop an effective nanomedicine that could overcome the disadvantages (e.g., nonspecificity, less bioavailability, and adverse side effect) associated with conventional treatment strategies of different diseases. To comprehend the drug release, stability of nanomaterials as well as ultimate therapeutic applications of DDS, it is highly essential to gradually develop and understand relevant physicochemical and biological characterization techniques. In view of the rapid growth of modern biomedical research involving drug delivery, it might be speculated that many nanomedicines based on DDS would come up in near future for practical therapeutic applications in human.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schaefer HE (2010) Nanoscience. The science of the small in physics, engineering, chemistry, biology and medicine. Springer Science+Business Media, Berlin

    Google Scholar 

  2. Teli MK, Mutalik S, Rajanikant GK (2010) Nanotechnology and nanomedicine: going small means aiming big. Curr Pharm Des 16:1882–1892

    Article  CAS  Google Scholar 

  3. Dai L (2006) Carbon nanotechnology recent developments in chemistry, physics, materials science and device applications. Elsevier, Amsterdam

    Google Scholar 

  4. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  5. Lohse SE, Murphy CJ (2012) Applications of colloidal inorganic nanoparticles: from medicine to energy. J Am Chem Soc 134(38):15607–15620

    Article  CAS  Google Scholar 

  6. Enterkin JA, Poeppelmeier KR, Marks LD (2011) Oriented catalytic platinum nanoparticles on high surface area strontium titanate nanocuboids. Nano Lett 11(3):993–997

    Article  CAS  Google Scholar 

  7. Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 1(1):18–52

    Article  CAS  Google Scholar 

  8. Han C, Andersen J, Pillai SC, Fagan R, Falaras P, Byrne JA, Dunlop PSM, Choi H, Jiang W, O’Shea K, Dionysiou DD (2013) Chapter green nanotechnology: development of nanomaterials for environmental and energy applications. In: Shamim N, Sharma VK (eds) Sustainable nanotechnology and the environment: advances and achievements, ACS symposium series, pp 201–229

    Chapter  Google Scholar 

  9. Barui AK, Kotcherlakota R, Bollu VS, Nethi SK, Patra CR (2017) Biomedical and drug delivery applications of functionalized inorganic nanomaterials. In: Biopolymer-based composites: drug delivery and biomedical applications. Woodhead Publishing, Copyright holder: Elsevier, Cambridge

    Google Scholar 

  10. Barui AK, Kotcherlakota R, Patra CR (2018) Medicinal applications of metal nanoparticles. In: Metal nanoparticles: synthesis and Applications in Pharmaceutical Sciences. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  11. Winter JO (2007) Nanoparticles and nanowires for cellular engineering. In: Nanotechnologies for the Life Sciences. Wiley-VCH Verlag GmbH & Co. KGaA

    Google Scholar 

  12. Cho KJ, Wang X, Nie SM, Chen Z, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14(5):1310–1316

    Article  CAS  Google Scholar 

  13. Torchilin VP (2010) Passive and active drug targeting: drug delivery to tumors as an example. Handb Exp Pharmacol 197:3–53

    Article  CAS  Google Scholar 

  14. Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153(3):198–205

    Article  CAS  Google Scholar 

  15. Danhier F, Feron O, Preat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148(2):135–146

    Article  CAS  Google Scholar 

  16. Bhatia S (2016) Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. In: Natural polymer drug delivery systems. Springer International Publishing, Cham

    Chapter  Google Scholar 

  17. Redhead HM, Davis SS, Illum L (2001) Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation. J Control Release 70(3):353–363

    Article  CAS  Google Scholar 

  18. Betancor L, Luckarift HR (2008) Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol 26(10):566–572

    Article  CAS  Google Scholar 

  19. Lee MY, Yang JA, Jung HS, Beack S, Choi JE, Hur W, Koo H, Kim K, Yoon SK, Hahn SK (2012) Hyaluronic acid-gold nanoparticle/Interferon α complex for targeted treatment of hepatitis c virus infection. ACS Nano 6(11):9522–9531

    Article  CAS  Google Scholar 

  20. Reimer L, Kohl H (2009) Transmission electron microscopy physics of image formation, vol 51. Springer, New York, pp 1–15

    Google Scholar 

  21. Jores K, Mehnert W, Drecusler M, Bunyes H, Johan CKM (2004) Investigation on the stricter of solid lipid nanopartuicles and oil-loaded solid nanoparticles by photon correlation spectroscopy, field flow fractionasition and transmission electron microscopy. J Control Release 17:217–227

    Article  CAS  Google Scholar 

  22. Molpeceres J, Aberturas MR, Guzman M (2000) Biodegradable nanoparticles as a delivery system for cyclosporine: preparation and characterization. J Microencapsul 17(5):599–614

    Article  CAS  Google Scholar 

  23. Sanpui P, Chattopadhyay A, Ghosh SS (2011) Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS Appl Mater Inter 3(2):218–228

    Article  CAS  Google Scholar 

  24. zurMuhlen Z, zurMuhlen E, Niehus H, Mehnert W (1996) Atomic force microscopy studies of solid lipid nanoparticles. Pharm Res 13(9):1411–1416

    Article  CAS  Google Scholar 

  25. Shi HQG, Farber L, Michaels JN, Dickey A, Thompson KC, Shelukar SD, Hurter PN, Reynolds SD, Kaufman MJ (2003) Characterization of crystalline drug nanoparticles using atomic force microscopy and complementary techniques. Pharm Res 20(3):479–484

    Article  CAS  Google Scholar 

  26. Polakovic M, Gorner T, Gref R, Dellacherie E (1999) Lidocaine loaded biodegradable nanospheres II. Modelling of drug release. J Control Release 60:169–177

    Article  CAS  Google Scholar 

  27. Liu Z, Robinson JT, Sun XM, Dai HJ (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130(33):10876–10877

    Article  CAS  Google Scholar 

  28. Cui T, Liang JJ, Chen H, Geng DD, Jiao L, Yang JY, Qian H, Zhang C, Ding Y (2017) Performance of doxorubicin-conjugated gold nanoparticles: regulation of drug location. ACS Appl Mater Inter 9(10):8569–8580

    Article  CAS  Google Scholar 

  29. Otsuka H, Nagasaki Y, Kataoka K (2003) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliver Rev 55(3):403–419

    Article  CAS  Google Scholar 

  30. Palanikumar L, Kim J, Oh JY, Choi H, Park MH, Kim C, Ryu JH (2018) Hyaluronic acid-modified polymeric gatekeepers on biodegradable mesoporous silica nanoparticles for targeted cancer therapy. ACS Biomater Sci Eng 4(5):1716–1722

    CAS  Google Scholar 

  31. Kreuter J (1983) Physicochemical characterization of polyacrylic nanoparticles. Int J Pharm 14(1):43–58

    Article  CAS  Google Scholar 

  32. Magenheim B, Levy MY, Benita S (1993) A new in-vitro technique for the evaluation of drug-release profile from colloidal carriers – ultrafiltration technique at low-pressure. Int J Pharm 94:115–123

    Article  CAS  Google Scholar 

  33. Wang XY, Cai XP, Hu JJ, Shao NM, Wang F, Zhang Q, Xiao JR, Cheng YY (2013) Glutathione-triggered “off-on” release of anticancer drugs from dendrimer-encapsulated gold nanoparticles. J Am Chem Soc 135(26):9805–9810

    Article  CAS  Google Scholar 

  34. Wang SH, Xu T, Yang YH, Shao ZZ (2015) Colloidal stability of silk fibroin nanoparticles coated with cationic polymer for effective drug delivery. ACS Appl Mater Inter 7(38):21254–21262

    Article  CAS  Google Scholar 

  35. Bollu VS, Barui AK, Mondal SK, Prashar S, Fajardo M, Briones D, Rodriguez-Dieguez A, Patra CR, Gomez-Ruiz S (2016) Curcumin-loaded silica-based mesoporous materials: synthesis, characterization and cytotoxic properties against cancer cells. Mat Sci Eng C-Mater 63:393–410

    Article  CAS  Google Scholar 

  36. Kotcherlakota R, Barui AK, Prashar S, Fajardo M, Briones D, Rodriguez-Dieguez A, Patra CR, Gomez-Ruiz S (2016) Curcumin loaded mesoporous silica: an effective drug delivery system for cancer treatment. Biomater Sci 4(3):448–459

    Article  CAS  Google Scholar 

  37. Gayathri T, Barui AK, Prashanthi S, Patra CR (2014) Singh SP: meso-Substituted BODIPY fluorescent probes for cellular bio-imaging and anticancer activity. RSC Adv 4(88):47409–47413

    Article  CAS  Google Scholar 

  38. Barui AK, Nethi SK, Patra CR (2017) Investigation of the role of nitric oxide driven angiogenesis by zinc oxide nanoflowers. J Mater Chem B 5(18):3391–3403

    Article  CAS  Google Scholar 

  39. Nagababu P, Barui AK, Thulasiram B, Devi CS, Satyanarayana S, Patra CR, Sreedhar B (2015) Antiangiogenic activity of mononuclear copper(ii) polypyridyl complexes for the treatment of cancers. J Med Chem 58(13):5226–5241

    Article  CAS  Google Scholar 

  40. Modak A, Barui AK, Patra CR, Bhaumik A (2013) A luminescent nanoporous hybrid material based drug delivery system showing excellent theranostics potential for cancer. Chem Commun 49(69):7644–7646

    Article  CAS  Google Scholar 

  41. Sau S, Agarwalla P, Mukherjee S, Bag I, Sreedhar B, Pal-Bhadra M, Patra CR, Banerjee R (2014) Cancer cell-selective promoter recognition accompanies antitumor effect by glucocorticoid receptor-targeted gold nanoparticle. Nanoscale 6(12):6745–6754

    Article  CAS  Google Scholar 

  42. Quan QM, Xie J, Gao HK, Yang M, Zhang F, Liu G, Lin X, Wang A, Eden HS, Lee S, Zhang GX, Chen XY (2011) HSA coated iron oxide nanoparticles as drug delivery vehicles for cancer therapy. Mol Pharm 8(5):1669–1676

    Article  CAS  Google Scholar 

  43. Mukherjee S, Dasari M, Priyamvada S, Kotcherlakota R, Bollu VS, Patra CR (2015) A green chemistry approach for the synthesis of gold nanoconjugates that induce the inhibition of cancer cell proliferation through induction of oxidative stress and their in vivo toxicity study. J Mater Chem B 3(18):3820–3830

    Article  CAS  Google Scholar 

  44. Jain S, Hirst DG, O’Sullivan JM (2012) Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 85:101–113

    Article  CAS  Google Scholar 

  45. Libutti SK, Paciotti GF, Byrnes AA, Alexander HR, Gannon WE, Walker M, Seidel GD, Yuldasheva N, Tamarkin L (2010) Phase I and pharmacokinetic studies of CYT-6091, a novel pegylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res 16(24):6139–6149

    Article  CAS  Google Scholar 

  46. Aryal S, Grailer JJ, Pilla S, Steeber DA, Gong SQ (2009) Doxorubicin conjugated gold nanoparticles as water-soluble and pH-responsive anticancer drug nanocarriers. J Mater Chem 19(42):7879–7884

    Article  CAS  Google Scholar 

  47. Brown SD, Nativo P, Smith JA, Stirling D, Edwards PR, Venugopal B, Flint DJ, Plumb JA, Graham D, Wheate NJ (2010) Gold Nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc 132(13):4678–4684

    Article  CAS  Google Scholar 

  48. Kumar CS, Raja MD, Sundar DS, Antoniraj MG, Ruckmani K (2015) Hyaluronic acid co-functionalized gold nanoparticle complex for the targeted delivery of metformin in the treatment of liver cancer (HepG2 cells). Carbohydr Polym 128:63–74

    Article  CAS  Google Scholar 

  49. Suarasan S, Focsan M, Potara M, Soritau O, Florea A, Maniu D, Astilean S (2016) Doxorubicin-incorporated nanotherapeutic delivery system based on gelatin-coated gold nanoparticles: formulation, drug release, and multimodal imaging of cellular internalization. ACS Appl Mater Inter 8(35):22900–22913

    Article  CAS  Google Scholar 

  50. Benyettou F, Rezgui R, Ravaux F, Jaber T, Blumer K, Jouiad M, Motte L, Olsen JC, Platas-Iglesias C, Magzoub M, Trabolsi A (2015) Synthesis of silver nanoparticles for the dual delivery of doxorubicin and alendronate to cancer cells. J Mater Chem B 3(36):7237–7245

    Article  CAS  Google Scholar 

  51. Li YH, Guo M, Lin ZF, Zhao MQ, Xiao MS, Wang CB, Xu TT, Chen TF, Zhu B (2016) Polyethylenimine-functionalized silver nanoparticle-based co-delivery of paclitaxel to induce HepG2 cell apoptosis. Int J Nanomedicine 11:6693–6702

    Article  CAS  Google Scholar 

  52. Liang JM, Zeng F, Zhang M, Pan ZZ, Chen YZ, Zeng YN, Xu Y, Xu Q, Huang YZ (2015) Green synthesis of hyaluronic acid-based silver nanoparticles and their enhanced delivery to CD44(+) cancer cells. RSC Adv 5(54):43733–43740

    Article  CAS  Google Scholar 

  53. Wang YL, Newell BB, Irudayaraj J (2012) Folic acid protected silver nanocarriers for targeted drug delivery. J Biomed Nanotechnol 8(5):751–759

    Article  CAS  Google Scholar 

  54. Paramasivam G, Sharma V, Sundaramurthy A (2017) Polyelectrolyte multilayer film coated silver nanorods: an effective carrier system for externally activated drug delivery. In: IOP conference series: materials science and engineering, p 225

    Google Scholar 

  55. Cai XL, Luo YN, Zhang WY, Du D, Lin YH (2016) pH-Sensitive ZnO quantum dots-doxorubicin nanoparticles for lung cancer targeted drug delivery. ACS Appl Mater Inter 8(34):22442–22450

    Article  CAS  Google Scholar 

  56. Cho NH, Cheong TC, Min JH, Wu JH, Lee SJ, Kim D, Yang JS, Kim S, Kim YK, Seong SY (2011) A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat Nanotechnol 6(10):675–682

    Article  CAS  Google Scholar 

  57. Chen T, Zhao T, Wei DF, Wei YX, Li YY, Zhang HX (2013) Core-shell nanocarriers with ZnO quantum dots-conjugated Au nanoparticle for tumor-targeted drug delivery. Carbohydr Polym 92(2):1124–1132

    Article  CAS  Google Scholar 

  58. Ghaffari SB, Sarrafzadeh MH, Fakhroueian Z, Shahriari S, Khorramizadeh MR (2017) Functionalization of ZnO nanoparticles by 3-mercaptopropionic acid for aqueous curcumin delivery: synthesis, characterization, and anticancer assessment. Mater Sci Eng C 79:465–472

    Article  CAS  Google Scholar 

  59. Han Z, Wang XH, Heng CL, Han QS, Cai SF, Li JY, Qi C, Liang W, Yang R, Wang C (2015) Synergistically enhanced photocatalytic and chemotherapeutic effects of aptamer-functionalized ZnO nanoparticles towards cancer cells. Phys Chem Chem Phys 17(33):21576–21582

    Article  CAS  Google Scholar 

  60. Chen J, Shi M, Liu PM, Ko A, Zhong W, Liao WJ, Xing MMQ (2014) Reducible polyamidoamine-magnetic iron oxide self-assembled nanoparticles for doxorubicin delivery. Biomaterials 35(4):1240–1248

    Article  CAS  Google Scholar 

  61. Park J, Kadasala NR, Abouelmagd SA, Castanares MA, Collins DS, Wei A, Yeo Y (2016) Polymer-iron oxide composite nanoparticles for EPR-independent drug delivery. Biomaterials 101:285–295

    Article  CAS  Google Scholar 

  62. Nasongkla N, Bey E, Ren JM, Ai H, Khemtong C, Guthi JS, Chin SF, Sherry AD, Boothman DA, Gao JM (2006) Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 6(11):2427–2430

    Article  CAS  Google Scholar 

  63. Hwu JR, Lin YS, Josephrajan T, Hsu MH, Cheng FY, Yeh CS, Su WC, Shieh DB (2009) Targeted paclitaxel by conjugation to iron oxide and gold nanoparticles. J Am Chem Soc 131(1):66

    Article  CAS  Google Scholar 

  64. Li QN, Wang XM, Lu XH, Tian HE, Jiang H, Lv G, Guo DD, Wu CH, Chen BA (2009) The incorporation of daunorubicin in cancer cells through the use of titanium dioxide whiskers. Biomaterials 30(27):4708–4715

    Article  CAS  Google Scholar 

  65. Kamari Y, Ghiaci P, Ghiaci M (2017) Study on montmorillonite/insulin/TiO2 hybrid nanocomposite as a new oral drug-delivery system. Mat Sci Eng C Mater 75:822–828

    Article  CAS  Google Scholar 

  66. Samadi S, Moradkhani M, Beheshti H, Irani M, Aliabadi M (2018) Fabrication of chitosan/poly(lactic acid)/graphene oxide/TiO2 composite nanofibrous scaffolds for sustained delivery of doxorubicin and treatment of lung cancer. Int J Biol Macromol 110:416–424

    Article  CAS  Google Scholar 

  67. Wang TY, Jiang HT, Wan L, Zhao QF, Jiang TY, Wang B, Wang SL (2015) Potential application of functional porous TiO2 nanoparticles in light-controlled drug release and targeted drug delivery. Acta Biomater 13:354–363

    Article  CAS  Google Scholar 

  68. Leon A, Reuquen P, Garin C, Segura R, Vargas P, Zapata P, Orihuela PA (2017) FTIR and Raman characterization of Tio2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol. Appl Sci 7(1)

    Article  CAS  Google Scholar 

  69. Chen JY, Chen SY, Zhao XR, Kuznetsova LV, Wong SS, Ojima I (2008) Functionalized Single-Walled Carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J Am Chem Soc 130(49):16778–16785

    Article  CAS  Google Scholar 

  70. Li RB, Wu R, Zhao L, Wu MH, Yang L, Zou HF (2010) P-Glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells. ACS Nano 4(3):1399–1408

    Article  CAS  Google Scholar 

  71. Ren JF, Shen S, Wang DG, Xi ZJ, Guo LR, Pang ZQ, Qian Y, Sun XY, Jiang XG (2012) The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with Angiopep-2. Biomaterials 33(11):3324–3333

    Article  CAS  Google Scholar 

  72. Zhang XK, Meng LJ, Lu QH, Fei ZF, Dyson PJ (2009) Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials 30(30):6041–6047

    Article  CAS  Google Scholar 

  73. Meng LJ, Zhang XK, Lu QH, Fei ZF, Dyson PJ (2012) Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumors. Biomaterials 33(6):1689–1698

    Article  CAS  Google Scholar 

  74. Feng T, Ai XZ, An GH, Yang PP, Zhao YL (2016) Charge-convertible carbon dots for imaging guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano 10(4):4410–4420

    Article  CAS  Google Scholar 

  75. Majumdar S, Krishnatreya G, Gogoi N, Thakur D, Chowdhury D (2016) Carbon-dot-coated alginate beads as a smart stimuli-responsive drug delivery system. ACS Appl Mater Inter 8(50):34179–34184

    Article  CAS  Google Scholar 

  76. Chen HY, Zheng DW, Liu J, Kuang Y, Li QL, Zhang M, Ye HF, Qin HY, Xu YL, Li C, Jiang BB (2016) pH-Sensitive drug delivery system based on modified dextrin coated mesoporous silica nanoparticles. Int J Biol Macromol 85:596–603

    Article  CAS  Google Scholar 

  77. de Oliveira LF, Bouchmella K, Goncalves KD, Bettini J, Kobarg J, Cardoso MB (2016) Functionalized silica nanoparticles as an alternative platform for targeted drug-delivery of water insoluble drugs. Langmuir 32(13):3217–3225

    Article  CAS  Google Scholar 

  78. Palanikumar L, Choi ES, Cheon JY, Joo SH, Ryu JH (2015) Noncovalent polymer-gatekeeper in mesoporous silica nanoparticles as a targeted drug delivery platform. Adv Funct Mater 25(6):957–965

    Article  CAS  Google Scholar 

  79. Palanikumar L, Kim HY, Oh JY, Thomas AP, Choi ES, Jeena MT, Joo SH, Ryu JH (2015) Noncovalent surface locking of mesoporous silica nanoparticles for exceptionally high hydrophobic drug loading and enhanced colloidal stability. Biomacromolecules 16(9):2701–2714

    Article  CAS  Google Scholar 

  80. Oh JY, Kim HS, Palanikumar L, Go EM, Jana B, Park SA, Kim HY, Kim K, Seo JK, Kwak SK, Kim C, Kang S, Ryu JH (2018) Cloaking nanoparticles with protein corona shield for targeted drug delivery. Nat Commun 9:4548

    Article  CAS  Google Scholar 

  81. Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Deliver Rev 64(2):129–137

    Article  CAS  Google Scholar 

  82. Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi HB, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10):2121–2134

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIP) (2016R1A5A1009405, 2017R1A2B4003617, and 2016R1E1A2A01954001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ja-Hyoung Ryu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barui, A.K., Jana, B., Ryu, JH. (2019). An Insight into Characterizations and Applications of Nanoparticulate Targeted Drug Delivery Systems. In: Kumar, C. (eds) Nanotechnology Characterization Tools for Tissue Engineering and Medical Therapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59596-1_11

Download citation

Publish with us

Policies and ethics